31edo modes
Jump to navigation
Jump to search
Taken originally from Scala, Manuel Op De Coul, this is a user-editable list of modes of 31edo. The numbers indicate successive intervals, in dieses. There is also a dedicated page about strictly proper 7-tone 31edo scales.
Nothing special
Or, to some, the only important thing.
2 3 3 2 3 2 3 2 3 3 2 3a | Meantone Chromatic (53/220-comma) |
5 5 3 5 5 5 3 | Thirty-one tone Major, Intense Diatonic Lydian, M.Ionian |
5 3 5 5 3 5 5 | Thirty-one tone Natural Minor, Intense Diatonic Hypodorian, Aeolian |
5 5 8 5 8 | Thirty-one tone Major Pentatonic |
5 3 5 5 5 5 3 | Thirty-one tone Melodic Minor |
5 3 5 5 3 7 3 | Thirty-one tone Harmonic Minor |
5 5 3 5 3 7 3 | Thirty-one tone Harmonic Major |
5 5 3 5 3 5 5 | Thirty-one tone Major-Minor |
8 2 8 2 8 3 | Thirty-one tone Augmented |
3 5 2 5 3 5 3 5 | Thirty-one tone Diminished |
5 2 6 5 2 5 6 | "Septimal" Natural Minor |
MOS
4 5 4 5 4 5 4 | Neutral[7] |
4 1 4 4 4 1 4 4 1 4 | Breed 10-tone / Neutral[10] |
7 7 7 7 3 | Orwell[5] |
4 3 4 3 4 3 4 3 3 | Orwell[9] |
3 1 3 3 1 3 3 1 3 3 1 3 3 | Orwell[13] |
9 9 2 9 2 | Squares[5] |
2 7 2 7 2 2 7 2 | Squares[8] |
2 5 2 2 2 5 2 2 2 5 2 | Secor/Barton no-fives / Squares[11] |
5 5 5 5 5 6 | Whole Tone / Tutone[6] |
4 1 4 1 4 1 4 1 4 1 4 1 1 | Tutone[13] |
6 6 6 6 1 6 | Mothra[6] |
5 1 5 1 5 1 5 1 5 1 1 | de Vries 11-tone / Mothra[11] |
3 4 3 3 3 3 3 3 3 3 | Miracle[10] |
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 | Blackjack / Miracle[21] |
3 4 4 4 4 4 4 4 | Greeley[8] |
3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 | Pseudo-Porcupine 15-note / Nusecond[15] |
2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 | Semi-Equalized Armodue / Valentine[16] |
5 7 5 7 7 | A-Team[5] |
5 5 2 5 5 2 5 2 | Oneirotonic / A-Team[8] |
3 2 3 2 2 3 2 2 3 2 3 2 2 | A-Team[13] |
11 3 11 3 3 | Joan[5] |
8 3 3 8 3 3 3 | Hypermavila / Joan[7] |
5 3 3 3 3 5 3 3 3 | Rothenberg Generalized Diatonic / Joan[9] |
3 2 3 3 3 3 2 3 3 3 3 | Joan[11] |
8 1 1 8 1 1 8 1 1 1 | Würschmidt[10] |
1 1 6 1 1 6 1 1 6 1 6 | Myna[11] |
1 1 12 1 1 1 1 12 1 | Tritonic[9] |
MODMOS
3 4 3 4 4 3 4 3 3 | Graham Orwell |
5 4 4 5 5 4 4 | Maqam Rast |
4 4 5 5 3 5 5 | Maqam Bayati |
5 5 3 5 4 5 4 | Turkish Major |
4 5 5 4 4 4 5 | Thaiic |
4 4 4 4 5 5 5 | Sheimanic |
5 5 4 4 5 5 3 | Screamapillar |
5 3 5 5 5 4 4 | Altered Dorian |
3 5 5 5 5 4 4 | Altered Neapolitan Major |
7 2 7 2 7 2 2 2 | Onydim |
5 5 2 2 2 2 5 2 2 2 2 | Squares Major |
5 5 4 6 5 6 | Harmonic Whole Tone |
5 5 5 2 5 2 5 2 | Dylydian / Archeodim |
5 2 5 2 5 2 8 2 | Harmonic Mnarian |
3 4 3 2 3 3 3 4 3 3 | Miracle Major |
3 4 3 4 4 5 4 4 | Greeley Major |
7 6 5 7 6 | Subminor Pentatonic |
5 6 7 6 7 | Supermajor Pentatonic |
1 6 1 1 1 6 1 1 6 1 6 | Submyna |
Cradle MOS
1 7 1 2 1 7 1 2 1 7 1 | Nested Bees |
3 1 6 1 3 3 1 6 1 3 3 | Arc Aurelius |
5 4 5 4 2 5 4 2 | Xenosquare |
5 4 5 3 5 4 5 | Scorp |
5 6 2 5 5 6 2 | Harrison Major |
4 2 4 2 4 2 4 3 3 3 | Lumma Decatonic |
8 2 8 2 8 2 1 | AugmentedPlus |
Hexany
5 5 8 5 5 3 | 1-3-5-9 |
5 6 7 6 5 2 | 1-3-7-9 |
3 7 6 2 6 7 | 1-3-5-7 |
9 4 1 4 9 4 | 1-3-9-11 |
4 4 6 4 4 9 | 1-3-5-11 |
4 7 7 7 4 2 | 1-3-7-11 |
8 4 6 4 8 1 | 1-3-5-13 |
Harmonic Series
8 7 6 5 5 | Mode 5 |
7 6 5 5 4 4 | Mode 6 |
6 5 5 4 4 4 3 | Mode 7 |
5 5 4 4 4 3 3 3 | Mode 8 |
4 4 4 3 3 3 3 2 3 2 | Mode 10 |
4 3 3 3 3 2 3 2 2 2 2 2 | Mode 12 |
3 3 3 2 3 2 2 2 2 2 2 2 1 2 | Mode 14 |
3 2 3 2 2 2 2 2 2 2 1 2 2 1 2 1 | Mode 16 |
4 4 5 5 6 7 | Mode 6-over |
2 3 3 3 3 4 4 4 5 | Mode 9-over |
1 2 2 1 2 2 2 2 2 2 2 3 2 3 3 | Mode 15-over |
Euler-Fokker genera
Boxy shapes from the [3,5,7] lattice.
5 8 5 13 | Genus primum |
10 3 5 5 5 3 | Genus secundum |
8 2 8 3 7 3 | Genus tertium |
10 10 10 1 | Genus quartum |
5 7 6 7 5 1 | Genus quintum |
4 6 2 6 4 3 3 3 | Genus sextum |
4 6 5 6 4 6 | Genus septimum |
6 6 6 1 6 6 | Genus octavum |
4 6 9 6 4 2 | Genus nonum |
13 6 6 6 | Genus decimum |
5 5 3 5 5 3 2 3 | Genus diatonicum |
3 5 2 3 5 3 2 5 3 | Genus chromaticum |
5 5 2 1 5 5 2 3 3 | Genus diatonicum cum septimis |
3 4 3 3 2 1 4 1 4 1 2 3 | Genus enharmonicum vocale |
2 2 4 2 2 3 3 3 1 3 3 3 | Genus enharmonicum instrumentale |
3 2 3 2 3 2 3 3 2 3 2 3 | Genus diatonico-chromaticum |
5 2 1 2 5 3 2 1 4 1 2 3 | Genus bichromaticum |
3 1 2 4 2 4 2 4 2 1 3 3 | Genus [3577] (Joel Mandelbaum Andante cantabile) |
Greek/tetrachord modes
4 4 5 4 4 5 5 | Neutral Diatonic Mixolydian |
4 5 4 4 5 5 4 | Neutral Diatonic Lydian |
5 4 4 5 5 4 4 | Neutral Diatonic Phrygian |
4 4 5 5 4 4 5 | Neutral Diatonic Dorian |
4 5 5 4 4 5 4 | Neutral Diatonic Hypolydian |
5 5 4 4 5 4 4 | Neutral Diatonic Hypophrygian |
5 4 4 5 4 4 5 | Neutral Diatonic Hypodorian |
4 5 4 4 5 4 5 | Neutral Mixolydian |
5 4 4 5 4 5 4 | Neutral Lydian |
4 4 5 4 5 4 5 | Neutral Phrygian |
4 5 4 5 4 5 4 | Neutral Dorian |
5 4 5 4 5 4 4 | Neutral Hypolydian |
4 5 4 5 4 4 5 | Neutral Hypophrygian |
5 4 5 4 4 5 4 | Neutral Hypodorian |
2 2 9 2 2 9 5 | Hemiolic Chromatic Mixolydian |
2 9 2 2 9 5 2 | Hemiolic Chromatic Lydian |
9 2 2 9 5 2 2 | Hemiolic Chromatic Phrygian |
2 2 9 5 2 2 9 | Hemiolic Chromatic Dorian |
2 9 5 2 2 9 2 | Hemiolic Chromatic Hypolydian |
9 5 2 2 9 2 2 | Hemiolic Chromatic Hypophrygian |
5 2 2 9 2 2 9 | Hemiolic Chromatic Hypodorian |
2 3 8 2 3 8 5 | Ratio 2:3 Chromatic Mixolydian |
3 8 2 3 8 5 2 | Ratio 2:3 Chromatic Lydian |
8 2 3 8 5 2 3 | Ratio 2:3 Chromatic Phrygian |
2 3 8 5 2 3 8 | Ratio 2:3 Chromatic Dorian |
3 8 5 2 3 8 2 | Ratio 2:3 Chromatic Hypolydian |
8 5 2 3 8 2 3 | Ratio 2:3 Chromatic Hypophrygian |
5 2 3 8 2 3 8 | Ratio 2:3 Chromatic Hypodorian |
3 5 5 3 5 5 5 | Intense Diatonic Mixolydian, M.Locrian |
5 3 5 5 5 3 5 | Intense Diatonic Phrygian, M.Dorian |
3 5 5 5 3 5 5 | Intense Diatonic Dorian, M.Phrygian |
5 5 5 3 5 5 3 | Intense Diatonic Hypolydian, M.Lydian |
5 5 3 5 5 3 5 | Intense Diatonic Hypophrygian, M.Mixolydian |
2 5 6 2 5 6 5 | Soft Diatonic Mixolydian |
5 6 2 5 6 5 2 | Soft Diatonic Lydian |
6 2 5 6 5 2 5 | Soft Diatonic Phrygian |
2 5 6 5 2 5 6 | Soft Diatonic Dorian |
5 6 5 2 5 6 2 | Soft Diatonic Hypolydian |
6 5 2 5 6 2 5 | Soft Diatonic Hypophrygian |
5 2 5 6 2 5 6 | Soft Diatonic Hypodorian |
1 2 10 1 2 10 5 | Enharmonic Mixolydian |
2 10 1 2 10 5 1 | Enharmonic Lydian |
10 1 2 10 5 1 2 | Enharmonic Phrygian |
1 2 10 5 1 2 10 | Enharmonic Dorian |
2 10 5 1 2 10 1 | Enharmonic Hypolydian |
10 5 1 2 10 1 2 | Enharmonic Hypophrygian |
5 1 2 10 1 2 10 | Enharmonic Hypodorian |
Of particular interscalar interest
6 6 7 6 6 | Quasi-equal Pentatonic |
3 3 2 3 3 3 3 3 2 3 3 | near 11edo |
Dimension scales
Miscellaneous
4 1 4 1 3 4 1 4 1 4 1 3 | Iceface |
1 4 2 3 3 1 4 2 3 2 3 3 | Centaurus |
3 2 2 3 3 2 3 3 2 2 3 3 | Fokker 12-tone |
5 3 5 3 5 2 5 3 | Modus conjunctus |
2 5 3 5 3 5 2 6 | Subminor Diminished |
2 5 3 5 5 5 6 | Subminor Altered |
2 8 3 5 2 5 6 | Phrygian Harmonic |
5 5 3 5 5 2 3 3 | Bebop Harmonic |
5 7 1 5 7 5 1 | Tropical Major |
3 3 4 3 5 3 4 3 3 | Hahn symmetric pentachordal |
3 4 3 3 5 3 4 3 3 | Hahn pentachordal |
4 4 2 5 3 3 4 3 3 | Hahn Nonatonic |
8 5 2 3 6 2 5 | Hyperblue Dorian (this is the original/default tuning) |
8 5 2 3 2 9 2 | Hyperblue harmonic (this is the original/default tuning) |
5 5 4 8 3 6 | Harmonic Prometheus |
3 2 3 2 2 2 2 2 2 3 2 3 3 | Major Miniscale (Mode 16 x Mode 15-over) |
7 3 4 4 7 6 | Graham Hexatonic |
3 7 8 8 5 | Magnetosphere |
Nonoctave
4 2 4 2 4 2 4 2 4 2 | Blackwood |
4 4 6 4 4 4 6 | Mavila |
8 2 8 2 8 2 | Suboctave Augmented |
2 6 2 6 2 6 2 6 | Superoctave Diminished |
4 4 3 7 3 5 3 (7) | Saba |
5 5 5 3 5 5 5 | Superlydian |