24ed5/2

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 23ed5/2 24ed5/2 25ed5/2 →
Prime factorization 23 × 3
Step size 66.0964¢ 
Octave 18\24ed5/2 (1189.74¢) (→3\4ed5/2)
Twelfth 29\24ed5/2 (1916.8¢)
Consistency limit 3
Distinct consistency limit 3
Special properties

24 equal divisions of 5/2 (abbreviated 24ed5/2) is a nonoctave tuning system that divides the interval of 5/2 into 24 equal parts of about 66.1⁠ ⁠¢ each. Each step represents a frequency ratio of (5/2)1/24, or the 24th root of 5/2.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 66.1 23/22, 24/23, 25/24, 26/25
2 132.2 13/12, 14/13, 15/14, 25/23
3 198.3 19/17
4 264.4 7/6, 22/19
5 330.5 17/14, 23/19
6 396.6 5/4, 19/15, 24/19
7 462.7 13/10, 17/13, 25/19
8 528.8 15/11, 19/14, 23/17
9 594.9 7/5, 17/12, 24/17
10 661 19/13, 22/15, 25/17
11 727.1 23/15, 26/17
12 793.2 11/7, 19/12
13 859.3 18/11, 23/14
14 925.3 12/7, 17/10
15 991.4 23/13, 25/14
16 1057.5 11/6, 24/13
17 1123.6 19/10, 21/11, 23/12, 25/13
18 1189.7 2/1
19 1255.8
20 1321.9 15/7
21 1388
22 1454.1 7/3, 23/10
23 1520.2 12/5
24 1586.3 5/2

Harmonics

Approximation of harmonics in 24ed5/2
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -10.3 +14.8 -20.5 -10.3 +4.6 +2.1 -30.8 +29.7 -20.5 +12.8 -5.7
Relative (%) -15.5 +22.5 -31.1 -15.5 +6.9 +3.2 -46.6 +44.9 -31.1 +19.3 -8.6
Steps
(reduced)
18
(18)
29
(5)
36
(12)
42
(18)
47
(23)
51
(3)
54
(6)
58
(10)
60
(12)
63
(15)
65
(17)
Approximation of harmonics in 24ed5/2
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -12.1 -8.2 +4.6 +25.0 -13.8 +19.4 -8.1 -30.8 +16.9 +2.5 -8.4
Relative (%) -18.3 -12.4 +6.9 +37.9 -20.9 +29.4 -12.2 -46.6 +25.6 +3.8 -12.7
Steps
(reduced)
67
(19)
69
(21)
71
(23)
73
(1)
74
(2)
76
(4)
77
(5)
78
(6)
80
(8)
81
(9)
82
(10)