226edt
Jump to navigation
Jump to search
Prime factorization
2 × 113
Step size
8.41573¢
Octave
143\226edt (1203.45¢)
Consistency limit
2
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 225edt | 226edt | 227edt → |
226 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 226edt or 226ed3), is a nonoctave tuning system that divides the interval of 3/1 into 226 equal parts of about 8.42 ¢ each. Each step represents a frequency ratio of 31/226, or the 226th root of 3.
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.45 | +0.00 | -1.52 | -0.71 | +3.45 | -2.53 | +1.93 | +0.00 | +2.74 | -2.36 | -1.52 |
Relative (%) | +41.0 | +0.0 | -18.0 | -8.4 | +41.0 | -30.1 | +23.0 | +0.0 | +32.6 | -28.1 | -18.0 | |
Steps (reduced) |
143 (143) |
226 (0) |
285 (59) |
331 (105) |
369 (143) |
400 (174) |
428 (202) |
452 (0) |
474 (22) |
493 (41) |
511 (59) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +2.98 | +0.92 | -0.71 | -3.03 | +1.42 | +3.45 | +2.42 | -2.22 | -2.53 | +1.09 | -0.13 |
Relative (%) | +35.4 | +10.9 | -8.4 | -36.0 | +16.8 | +41.0 | +28.7 | -26.4 | -30.1 | +12.9 | -1.5 | |
Steps (reduced) |
528 (76) |
543 (91) |
557 (105) |
570 (118) |
583 (131) |
595 (143) |
606 (154) |
616 (164) |
626 (174) |
636 (184) |
645 (193) |