225edt
Jump to navigation
Jump to search
Prime factorization
32 × 52
Step size
8.45313¢
Octave
142\225edt (1200.34¢)
Consistency limit
10
Distinct consistency limit
10
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 224edt | 225edt | 226edt → |
225 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 225edt or 225ed3), is a nonoctave tuning system that divides the interval of 3/1 into 225 equal parts of about 8.45 ¢ each. Each step represents a frequency ratio of 31/225, or the 225th root of 3.
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.34 | +0.00 | +0.69 | +3.22 | +0.34 | +3.97 | +1.03 | +0.00 | +3.57 | -0.83 | +0.69 |
Relative (%) | +4.1 | +0.0 | +8.2 | +38.1 | +4.1 | +47.0 | +12.2 | +0.0 | +42.2 | -9.8 | +8.2 | |
Steps (reduced) |
142 (142) |
225 (0) |
284 (59) |
330 (105) |
367 (142) |
399 (174) |
426 (201) |
450 (0) |
472 (22) |
491 (41) |
509 (59) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.63 | -4.13 | +3.22 | +1.38 | -2.14 | +0.34 | -0.27 | +3.91 | +3.97 | -0.48 | -1.36 |
Relative (%) | -31.1 | -48.9 | +38.1 | +16.3 | -25.3 | +4.1 | -3.2 | +46.3 | +47.0 | -5.7 | -16.1 | |
Steps (reduced) |
525 (75) |
540 (90) |
555 (105) |
568 (118) |
580 (130) |
592 (142) |
603 (153) |
614 (164) |
624 (174) |
633 (183) |
642 (192) |