19ed7/3

From Xenharmonic Wiki
Jump to navigation Jump to search
← 18ed7/3 19ed7/3 20ed7/3 →
Prime factorization 19 (prime)
Step size 77.2037¢ 
Octave 16\19ed7/3 (1235.26¢)
Twelfth 25\19ed7/3 (1930.09¢)
Consistency limit 3
Distinct consistency limit 3

19 equal divisions of 7/3 (abbreviated 19ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 19 equal parts of about 77.2⁠ ⁠¢ each. Each step represents a frequency ratio of (7/3)1/19, or the 19th root of 7/3.

Intervals

Degrees Enneatonic ed11\9~ed7/3
1 Jb Ab 77.193 77.2037
2 G# 154.386 154.4075
3 J A 231.57895 231.6112
4 A B 308.7719 308.8149
5 Bb Cb 385.9649 386.0187
6 A# B# 463.1579 463.2224
7 B C 540.3509 540.4261
8 C Q 617.5439 617.6299
9 Qb Db 694.7368 694.8336
10 C# Q# 771.9298 772.0373
11 Q D 849.1228 849.24105
12 D S 926.3158 926.4448
13 Eb 1003.5088 1003.6485
14 D# S# 1080.70175 1080.85225
15 E 1157.8947 1158.0559
16 Fb 1235.0877 1235.2567
17 E# 1312.2807 1312.4634
18 F 1389.4737 1389.6672
19 G 1466.6 1466.8709

Harmonics

Approximation of harmonics in 19ed7/3
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +35.3 +28.1 -6.7 -7.0 -13.8 +28.1 +28.6 -20.9 +28.3 +17.7 +21.5
Relative (%) +45.7 +36.4 -8.7 -9.0 -17.9 +36.4 +37.0 -27.1 +36.6 +22.9 +27.8
Steps
(reduced)
16
(16)
25
(6)
31
(12)
36
(17)
40
(2)
44
(6)
47
(9)
49
(11)
52
(14)
54
(16)
56
(18)
Approximation of harmonics in 19ed7/3
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +37.3 -13.8 +21.2 -13.4 +36.1 +14.3 -2.1 -13.7 -20.9 -24.3 -24.0
Relative (%) +48.3 -17.9 +27.4 -17.3 +46.7 +18.6 -2.7 -17.7 -27.1 -31.4 -31.1
Steps
(reduced)
58
(1)
59
(2)
61
(4)
62
(5)
64
(7)
65
(8)
66
(9)
67
(10)
68
(11)
69
(12)
70
(13)