20ed7/3
Jump to navigation
Jump to search
Prime factorization
22 × 5
Step size
73.3435¢
Octave
16\20ed7/3 (1173.5¢) (→4\5ed7/3)
Twelfth
26\20ed7/3 (1906.93¢) (→13\10ed7/3)
Consistency limit
3
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 19ed7/3 | 20ed7/3 | 21ed7/3 → |
20 equal divisions of 7/3 (abbreviated 20ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 20 equal parts of about 73.3 ¢ each. Each step represents a frequency ratio of (7/3)1/20, or the 20th root of 7/3.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 73.344 | 22/21, 23/22 |
2 | 146.687 | 23/21, 25/23 |
3 | 220.031 | 17/15, 25/22 |
4 | 293.374 | 13/11, 25/21 |
5 | 366.718 | 21/17 |
6 | 440.061 | 9/7, 22/17, 23/18 |
7 | 513.405 | 23/17 |
8 | 586.748 | 7/5 |
9 | 660.092 | 19/13, 22/15, 25/17 |
10 | 733.435 | 23/15 |
11 | 806.779 | |
12 | 880.123 | 5/3 |
13 | 953.466 | 19/11 |
14 | 1026.81 | 9/5 |
15 | 1100.153 | 17/9 |
16 | 1173.497 | |
17 | 1246.84 | |
18 | 1320.184 | 15/7 |
19 | 1393.527 | |
20 | 1466.871 | 7/3 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -26.5 | +5.0 | +20.3 | +0.7 | -21.5 | +5.0 | -6.2 | +10.0 | -25.8 | +29.3 | +25.3 |
Relative (%) | -36.1 | +6.8 | +27.7 | +1.0 | -29.3 | +6.8 | -8.4 | +13.6 | -35.1 | +39.9 | +34.5 | |
Steps (reduced) |
16 (16) |
26 (6) |
33 (13) |
38 (18) |
42 (2) |
46 (6) |
49 (9) |
52 (12) |
54 (14) |
57 (17) |
59 (19) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +33.4 | -21.5 | +5.7 | -32.7 | +9.1 | -16.5 | +36.5 | +21.1 | +10.0 | +2.8 | -0.9 |
Relative (%) | +45.6 | -29.3 | +7.8 | -44.5 | +12.4 | -22.6 | +49.8 | +28.7 | +13.6 | +3.8 | -1.2 | |
Steps (reduced) |
61 (1) |
62 (2) |
64 (4) |
65 (5) |
67 (7) |
68 (8) |
70 (10) |
71 (11) |
72 (12) |
73 (13) |
74 (14) |