1905370edo

From Xenharmonic Wiki
Jump to navigation Jump to search
This page presents a topic of primarily mathematical interest.

While it is derived from sound mathematical principles, its applications in terms of utility for actual music may be limited, highly contrived, or as yet unknown.

← 1905369edo 1905370edo 1905371edo →
Prime factorization 2 × 5 × 190537
Step size 0.000629799 ¢ 
Fifth 1114570\1905370 (701.955 ¢) (→ 111457\190537)
Semitones (A1:m2) 180510:143260 (113.7 ¢ : 90.22 ¢)
Consistency limit 17
Distinct consistency limit 17

1905370 equal divisions of the octave (abbreviated 1905370edo or 1905370ed2), also called 1905370-tone equal temperament (1905370tet) or 1905370 equal temperament (1905370et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 1905370 equal parts of about 0.00063 ¢ each. Each step represents a frequency ratio of 21/1905370, or the 1905370th root of 2.

This edo has a consistency limit of 17, but seems to be at its best in the 2.3.5.7.13.17 subgroup. It tempers out the archangelic comma in the 3-limit.

Prime harmonics

Approximation of prime harmonics in 1905370edo
Harmonic 2 3 5 7 11 13 17 19 23
Error Absolute (¢) +0.000000 +0.000000 -0.000084 +0.000096 -0.000141 +0.000110 -0.000047 +0.000223 -0.000154
Relative (%) +0.0 +0.0 -13.4 +15.2 -22.3 +17.4 -7.4 +35.4 -24.4
Steps
(reduced)
1905370
(0)
3019940
(1114570)
4424132
(613392)
5349050
(1538310)
6591497
(875387)
7050707
(1334597)
7788129
(166649)
8093874
(472394)
8619059
(997579)
Approximation of prime harmonics in 1905370edo (continued)
Harmonic 29 31 37 41 43 47 53 59 61
Error Absolute (¢) -0.000157 -0.000015 -0.000100 +0.000086 -0.000048 +0.000025 +0.000128 +0.000260 -0.000001
Relative (%) -24.9 -2.4 -15.9 +13.7 -7.6 +4.0 +20.3 +41.3 -0.1
Steps
(reduced)
9256251
(1634771)
9439577
(1818097)
9925936
(399086)
10208119
(681269)
10339042
(812192)
10583547
(1056697)
10913808
(1386958)
11208612
(1681762)
11300249
(1773399)