1879edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 1878edo 1879edo 1880edo →
Prime factorization 1879 (prime)
Step size 0.638638 ¢ 
Fifth 1099\1879 (701.863 ¢)
Semitones (A1:m2) 177:142 (113 ¢ : 90.69 ¢)
Consistency limit 21
Distinct consistency limit 21

1879 equal divisions of the octave (abbreviated 1879edo or 1879ed2), also called 1879-tone equal temperament (1879tet) or 1879 equal temperament (1879et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 1879 equal parts of about 0.639 ¢ each. Each step represents a frequency ratio of 21/1879, or the 1879th root of 2.

Theory

1879edo is consistent to the 21-odd-limit, tempering out 2376/2375, 12376/12375, 67392/67375, 20007/20000, 13377/13376, 11781/11776, 89376/89375 and 25025/25024 in the 23-limit. It is strong in the 2.3.5.7.13.19.29.31 subgroup, tempering out 20007/20000, 3969/3968, 28431/28420, 4901/4900, 1016064/1015625, 885735/885248 and 138240/138229. Using the 2.3.5.7.11.29.41 subgroup, it tempers out 2871/2870.

Prime harmonics

Approximation of prime harmonics in 1879edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.000 -0.092 +0.062 -0.013 -0.174 -0.081 -0.219 +0.092 +0.145 -0.093 +0.042
Relative (%) +0.0 -14.5 +9.7 -2.0 -27.2 -12.6 -34.3 +14.4 +22.7 -14.6 +6.5
Steps
(reduced)
1879
(0)
2978
(1099)
4363
(605)
5275
(1517)
6500
(863)
6953
(1316)
7680
(164)
7982
(466)
8500
(984)
9128
(1612)
9309
(1793)

Subsets and supersets

1879edo is the 289th prime edo.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [-2978 1879 [1879 2978]] 0.0291 0.0291 4.56
2.3.5 [-8 49 -30, [91 -12 -31 [1879 2978 4363]] 0.0105 0.0355 5.56
2.3.5.7 14348907/14336000, 200120949/200000000, 8796093022208/8792724609375 [1879 2978 4363 5275]] 0.0090 0.0308 4.82
2.3.5.7.11 160083/160000, 151263/151250, 2657205/2656192, 262766592/262609375 [1879 2978 4363 5275 6500]] 0.0173 0.0321 5.03
2.3.5.7.11.13 67392/67375, 160083/160000, 50193/50176, 557568/557375, 4100625/4100096 [1879 2978 4363 5275 6500 6953]] 0.0180 0.0294 4.60
2.3.5.7.11.13.17 12376/12375, 67392/67375, 160083/160000, 75735/75712, 131648/131625, 194481/194480 [1879 2978 4363 5275 6500 6953 7680]] 0.0231 0.0299 4.68
2.3.5.7.11.13.17.19 2376/2375, 12376/12375, 67392/67375, 10241/10240, 89376/89375, 28431/28424, 111537/111475 [1879 2978 4363 5275 6500 6953 7680 7982]] 0.0175 0.0316 4.95