133ed4
Jump to navigation
Jump to search
Prime factorization
7 × 19
Step size
18.0451¢
Octave
67\133ed4 (1209.02¢)
Twelfth
105\133ed4 (1894.74¢) (→15\19ed4)
Consistency limit
1
Distinct consistency limit
1
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 131ed4 | 133ed4 | 135ed4 → |
133 equal divisions of the 4th harmonic (abbreviated 133ed4) is a nonoctave tuning system that divides the interval of 4/1 into 133 equal parts of about 18 ¢ each. Each step represents a frequency ratio of 41/133, or the 133rd root of 4.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 18 | |
2 | 36.1 | |
3 | 54.1 | |
4 | 72.2 | |
5 | 90.2 | 39/37 |
6 | 108.3 | 33/31, 49/46, 50/47 |
7 | 126.3 | |
8 | 144.4 | |
9 | 162.4 | |
10 | 180.5 | |
11 | 198.5 | 37/33 |
12 | 216.5 | |
13 | 234.6 | |
14 | 252.6 | |
15 | 270.7 | |
16 | 288.7 | 13/11 |
17 | 306.8 | 37/31, 43/36 |
18 | 324.8 | 35/29 |
19 | 342.9 | 50/41 |
20 | 360.9 | |
21 | 378.9 | 51/41 |
22 | 397 | 39/31 |
23 | 415 | 47/37 |
24 | 433.1 | |
25 | 451.1 | |
26 | 469.2 | 38/29 |
27 | 487.2 | |
28 | 505.3 | |
29 | 523.3 | 23/17 |
30 | 541.4 | 41/30 |
31 | 559.4 | 29/21 |
32 | 577.4 | |
33 | 595.5 | |
34 | 613.5 | 47/33 |
35 | 631.6 | 49/34 |
36 | 649.6 | |
37 | 667.7 | |
38 | 685.7 | |
39 | 703.8 | |
40 | 721.8 | 47/31 |
41 | 739.8 | |
42 | 757.9 | |
43 | 775.9 | 36/23, 47/30 |
44 | 794 | |
45 | 812 | |
46 | 830.1 | 21/13 |
47 | 848.1 | 31/19 |
48 | 866.2 | |
49 | 884.2 | 5/3 |
50 | 902.3 | |
51 | 920.3 | 17/10 |
52 | 938.3 | |
53 | 956.4 | 33/19 |
54 | 974.4 | |
55 | 992.5 | |
56 | 1010.5 | |
57 | 1028.6 | |
58 | 1046.6 | |
59 | 1064.7 | |
60 | 1082.7 | 43/23 |
61 | 1100.8 | |
62 | 1118.8 | 21/11 |
63 | 1136.8 | |
64 | 1154.9 | 37/19 |
65 | 1172.9 | |
66 | 1191 | |
67 | 1209 | |
68 | 1227.1 | |
69 | 1245.1 | 39/19 |
70 | 1263.2 | |
71 | 1281.2 | |
72 | 1299.2 | 36/17 |
73 | 1317.3 | |
74 | 1335.3 | |
75 | 1353.4 | |
76 | 1371.4 | |
77 | 1389.5 | 29/13 |
78 | 1407.5 | |
79 | 1425.6 | 41/18 |
80 | 1443.6 | 23/10 |
81 | 1461.7 | |
82 | 1479.7 | |
83 | 1497.7 | |
84 | 1515.8 | |
85 | 1533.8 | |
86 | 1551.9 | 49/20 |
87 | 1569.9 | |
88 | 1588 | |
89 | 1606 | 43/17 |
90 | 1624.1 | |
91 | 1642.1 | |
92 | 1660.2 | 47/18 |
93 | 1678.2 | 29/11 |
94 | 1696.2 | |
95 | 1714.3 | 35/13 |
96 | 1732.3 | |
97 | 1750.4 | |
98 | 1768.4 | 25/9 |
99 | 1786.5 | |
100 | 1804.5 | 17/6 |
101 | 1822.6 | |
102 | 1840.6 | |
103 | 1858.6 | 38/13 |
104 | 1876.7 | |
105 | 1894.7 | |
106 | 1912.8 | |
107 | 1930.8 | |
108 | 1948.9 | |
109 | 1966.9 | |
110 | 1985 | |
111 | 2003 | 35/11 |
112 | 2021.1 | |
113 | 2039.1 | |
114 | 2057.1 | |
115 | 2075.2 | |
116 | 2093.2 | |
117 | 2111.3 | |
118 | 2129.3 | |
119 | 2147.4 | 38/11 |
120 | 2165.4 | |
121 | 2183.5 | |
122 | 2201.5 | |
123 | 2219.5 | |
124 | 2237.6 | |
125 | 2255.6 | |
126 | 2273.7 | |
127 | 2291.7 | |
128 | 2309.8 | 19/5 |
129 | 2327.8 | 23/6 |
130 | 2345.9 | |
131 | 2363.9 | |
132 | 2382 | |
133 | 2400 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +9.02 | -7.22 | +0.00 | -7.37 | +1.80 | +5.61 | +9.02 | +3.61 | +1.66 | -0.94 | -7.22 |
Relative (%) | +50.0 | -40.0 | +0.0 | -40.8 | +10.0 | +31.1 | +50.0 | +20.0 | +9.2 | -5.2 | -40.0 | |
Steps (reduced) |
67 (67) |
105 (105) |
133 (0) |
154 (21) |
172 (39) |
187 (54) |
200 (67) |
211 (78) |
221 (88) |
230 (97) |
238 (105) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -1.43 | -3.41 | +3.46 | +0.00 | +3.32 | -5.41 | -8.79 | -7.37 | -1.61 | +8.08 | +3.30 |
Relative (%) | -7.9 | -18.9 | +19.2 | +0.0 | +18.4 | -30.0 | -48.7 | -40.8 | -8.9 | +44.8 | +18.3 | |
Steps (reduced) |
246 (113) |
253 (120) |
260 (127) |
266 (0) |
272 (6) |
277 (11) |
282 (16) |
287 (21) |
292 (26) |
297 (31) |
301 (35) |