107ed4
Jump to navigation
Jump to search
Prime factorization
107 (prime)
Step size
22.4299¢
Octave
54\107ed4 (1211.21¢)
Twelfth
85\107ed4 (1906.54¢)
Consistency limit
1
Distinct consistency limit
1
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 105ed4 | 107ed4 | 109ed4 → |
107 equal divisions of the 4th harmonic (abbreviated 107ed4) is a nonoctave tuning system that divides the interval of 4/1 into 107 equal parts of about 22.4 ¢ each. Each step represents a frequency ratio of 41/107, or the 107th root of 4.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 22.43 | |
2 | 44.86 | 38/37, 39/38 |
3 | 67.29 | 27/26 |
4 | 89.72 | 39/37 |
5 | 112.15 | |
6 | 134.579 | |
7 | 157.009 | 23/21 |
8 | 179.439 | 41/37 |
9 | 201.869 | |
10 | 224.299 | 33/29 |
11 | 246.729 | 15/13 |
12 | 269.159 | |
13 | 291.589 | 45/38 |
14 | 314.019 | |
15 | 336.449 | 17/14 |
16 | 358.879 | |
17 | 381.308 | |
18 | 403.738 | |
19 | 426.168 | |
20 | 448.598 | 22/17 |
21 | 471.028 | |
22 | 493.458 | |
23 | 515.888 | 31/23 |
24 | 538.318 | 15/11 |
25 | 560.748 | 29/21 |
26 | 583.178 | 7/5 |
27 | 605.607 | |
28 | 628.037 | |
29 | 650.467 | |
30 | 672.897 | 31/21 |
31 | 695.327 | |
32 | 717.757 | |
33 | 740.187 | 23/15 |
34 | 762.617 | 45/29 |
35 | 785.047 | |
36 | 807.477 | |
37 | 829.907 | 21/13 |
38 | 852.336 | |
39 | 874.766 | |
40 | 897.196 | |
41 | 919.626 | 17/10 |
42 | 942.056 | |
43 | 964.486 | |
44 | 986.916 | 23/13 |
45 | 1009.346 | |
46 | 1031.776 | |
47 | 1054.206 | |
48 | 1076.636 | 41/22 |
49 | 1099.065 | 17/9 |
50 | 1121.495 | 21/11 |
51 | 1143.925 | |
52 | 1166.355 | |
53 | 1188.785 | |
54 | 1211.215 | |
55 | 1233.645 | |
56 | 1256.075 | 31/15 |
57 | 1278.505 | 23/11 |
58 | 1300.935 | |
59 | 1323.364 | |
60 | 1345.794 | 37/17 |
61 | 1368.224 | |
62 | 1390.654 | 29/13, 38/17 |
63 | 1413.084 | 43/19 |
64 | 1435.514 | 39/17 |
65 | 1457.944 | |
66 | 1480.374 | |
67 | 1502.804 | 31/13 |
68 | 1525.234 | 41/17 |
69 | 1547.664 | 22/9 |
70 | 1570.093 | |
71 | 1592.523 | |
72 | 1614.953 | 33/13 |
73 | 1637.383 | |
74 | 1659.813 | |
75 | 1682.243 | 37/14 |
76 | 1704.673 | |
77 | 1727.103 | 19/7 |
78 | 1749.533 | |
79 | 1771.963 | 39/14 |
80 | 1794.393 | 31/11 |
81 | 1816.822 | |
82 | 1839.252 | |
83 | 1861.682 | 41/14 |
84 | 1884.112 | |
85 | 1906.542 | |
86 | 1928.972 | |
87 | 1951.402 | |
88 | 1973.832 | |
89 | 1996.262 | |
90 | 2018.692 | |
91 | 2041.121 | |
92 | 2063.551 | |
93 | 2085.981 | 10/3 |
94 | 2108.411 | |
95 | 2130.841 | |
96 | 2153.271 | |
97 | 2175.701 | |
98 | 2198.131 | |
99 | 2220.561 | |
100 | 2242.991 | |
101 | 2265.421 | 37/10 |
102 | 2287.85 | |
103 | 2310.28 | 19/5 |
104 | 2332.71 | |
105 | 2355.14 | 39/10 |
106 | 2377.57 | |
107 | 2400 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +11.21 | +4.59 | +0.00 | -5.01 | -6.63 | -4.34 | +11.21 | +9.17 | +6.21 | -1.79 | +4.59 |
Relative (%) | +50.0 | +20.5 | +0.0 | -22.3 | -29.5 | -19.3 | +50.0 | +40.9 | +27.7 | -8.0 | +20.5 | |
Steps (reduced) |
54 (54) |
85 (85) |
107 (0) |
124 (17) |
138 (31) |
150 (43) |
161 (54) |
170 (63) |
178 (71) |
185 (78) |
192 (85) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.59 | +6.88 | -0.42 | +0.00 | +7.19 | -2.04 | -5.92 | -5.01 | +0.25 | +9.43 | -0.24 |
Relative (%) | +2.6 | +30.7 | -1.9 | +0.0 | +32.1 | -9.1 | -26.4 | -22.3 | +1.1 | +42.0 | -1.1 | |
Steps (reduced) |
198 (91) |
204 (97) |
209 (102) |
214 (0) |
219 (5) |
223 (9) |
227 (13) |
231 (17) |
235 (21) |
239 (25) |
242 (28) |