105ed4
Jump to navigation
Jump to search
Prime factorization
3 × 5 × 7
Step size
22.8571¢
Octave
53\105ed4 (1211.43¢)
Twelfth
83\105ed4 (1897.14¢)
Consistency limit
1
Distinct consistency limit
1
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 103ed4 | 105ed4 | 107ed4 → |
105 equal divisions of the 4th harmonic (abbreviated 105ed4) is a nonoctave tuning system that divides the interval of 4/1 into 105 equal parts of about 22.9 ¢ each. Each step represents a frequency ratio of 41/105, or the 105th root of 4.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 22.857 | |
2 | 45.714 | |
3 | 68.571 | 26/25 |
4 | 91.429 | 19/18, 39/37 |
5 | 114.286 | 31/29 |
6 | 137.143 | |
7 | 160 | 45/41 |
8 | 182.857 | |
9 | 205.714 | |
10 | 228.571 | |
11 | 251.429 | |
12 | 274.286 | 41/35 |
13 | 297.143 | |
14 | 320 | |
15 | 342.857 | |
16 | 365.714 | |
17 | 388.571 | |
18 | 411.429 | 19/15, 33/26 |
19 | 434.286 | 9/7 |
20 | 457.143 | 43/33 |
21 | 480 | 33/25 |
22 | 502.857 | |
23 | 525.714 | 42/31 |
24 | 548.571 | |
25 | 571.429 | |
26 | 594.286 | |
27 | 617.143 | |
28 | 640 | 42/29 |
29 | 662.857 | |
30 | 685.714 | |
31 | 708.571 | |
32 | 731.429 | 29/19 |
33 | 754.286 | 17/11 |
34 | 777.143 | |
35 | 800 | 46/29 |
36 | 822.857 | 37/23 |
37 | 845.714 | 31/19 |
38 | 868.571 | |
39 | 891.429 | |
40 | 914.286 | 39/23 |
41 | 937.143 | 43/25 |
42 | 960 | |
43 | 982.857 | 30/17, 37/21 |
44 | 1005.714 | 25/14 |
45 | 1028.571 | |
46 | 1051.429 | 11/6 |
47 | 1074.286 | |
48 | 1097.143 | |
49 | 1120 | |
50 | 1142.857 | 29/15 |
51 | 1165.714 | |
52 | 1188.571 | |
53 | 1211.429 | |
54 | 1234.286 | |
55 | 1257.143 | 31/15 |
56 | 1280 | |
57 | 1302.857 | |
58 | 1325.714 | |
59 | 1348.571 | |
60 | 1371.429 | 42/19 |
61 | 1394.286 | 38/17 |
62 | 1417.143 | |
63 | 1440 | |
64 | 1462.857 | |
65 | 1485.714 | 33/14 |
66 | 1508.571 | 43/18 |
67 | 1531.429 | 46/19 |
68 | 1554.286 | |
69 | 1577.143 | |
70 | 1600 | |
71 | 1622.857 | 23/9 |
72 | 1645.714 | |
73 | 1668.571 | |
74 | 1691.429 | |
75 | 1714.286 | 35/13 |
76 | 1737.143 | 30/11 |
77 | 1760 | |
78 | 1782.857 | 14/5 |
79 | 1805.714 | |
80 | 1828.571 | |
81 | 1851.429 | |
82 | 1874.286 | |
83 | 1897.143 | |
84 | 1920 | |
85 | 1942.857 | 43/14 |
86 | 1965.714 | |
87 | 1988.571 | 41/13 |
88 | 2011.429 | |
89 | 2034.286 | |
90 | 2057.143 | 23/7 |
91 | 2080 | |
92 | 2102.857 | |
93 | 2125.714 | |
94 | 2148.571 | 45/13 |
95 | 2171.429 | |
96 | 2194.286 | |
97 | 2217.143 | 18/5 |
98 | 2240 | |
99 | 2262.857 | |
100 | 2285.714 | |
101 | 2308.571 | |
102 | 2331.429 | |
103 | 2354.286 | |
104 | 2377.143 | |
105 | 2400 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +11.4 | -4.8 | +0.0 | +2.3 | +6.6 | -8.8 | +11.4 | -9.6 | -9.2 | +8.7 | -4.8 |
Relative (%) | +50.0 | -21.1 | +0.0 | +9.9 | +28.9 | -38.6 | +50.0 | -42.1 | -40.1 | +38.0 | -21.1 | |
Steps (reduced) |
53 (53) |
83 (83) |
105 (0) |
122 (17) |
136 (31) |
147 (42) |
158 (53) |
166 (61) |
174 (69) |
182 (77) |
188 (83) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -6.2 | +2.6 | -2.6 | +0.0 | +9.3 | +1.8 | -0.4 | +2.3 | +9.2 | -2.7 | -11.1 |
Relative (%) | -27.3 | +11.4 | -11.2 | +0.0 | +40.8 | +7.9 | -1.6 | +9.9 | +40.3 | -12.0 | -48.7 | |
Steps (reduced) |
194 (89) |
200 (95) |
205 (100) |
210 (0) |
215 (5) |
219 (9) |
223 (13) |
227 (17) |
231 (21) |
234 (24) |
237 (27) |