103ed4
Jump to navigation
Jump to search
Prime factorization
103 (prime)
Step size
23.301¢
Octave
52\103ed4 (1211.65¢)
Twelfth
82\103ed4 (1910.68¢)
Consistency limit
1
Distinct consistency limit
1
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 101ed4 | 103ed4 | 105ed4 → |
103 equal divisions of the 4th harmonic (abbreviated 103ed4) is a nonoctave tuning system that divides the interval of 4/1 into 103 equal parts of about 23.3 ¢ each. Each step represents a frequency ratio of 41/103, or the 103rd root of 4.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 23.301 | |
2 | 46.602 | 39/38 |
3 | 69.903 | 26/25 |
4 | 93.204 | |
5 | 116.505 | 31/29 |
6 | 139.806 | |
7 | 163.107 | |
8 | 186.408 | 39/35 |
9 | 209.709 | 44/39 |
10 | 233.01 | |
11 | 256.311 | |
12 | 279.612 | |
13 | 302.913 | 25/21 |
14 | 326.214 | |
15 | 349.515 | |
16 | 372.816 | |
17 | 396.117 | 44/35 |
18 | 419.417 | 37/29 |
19 | 442.718 | |
20 | 466.019 | 17/13 |
21 | 489.32 | |
22 | 512.621 | 35/26 |
23 | 535.922 | |
24 | 559.223 | |
25 | 582.524 | 7/5 |
26 | 605.825 | |
27 | 629.126 | |
28 | 652.427 | |
29 | 675.728 | |
30 | 699.029 | |
31 | 722.33 | |
32 | 745.631 | |
33 | 768.932 | 39/25 |
34 | 792.233 | |
35 | 815.534 | |
36 | 838.835 | |
37 | 862.136 | |
38 | 885.437 | 5/3 |
39 | 908.738 | 22/13 |
40 | 932.039 | |
41 | 955.34 | 33/19 |
42 | 978.641 | 44/25 |
43 | 1001.942 | 25/14, 41/23 |
44 | 1025.243 | 38/21 |
45 | 1048.544 | |
46 | 1071.845 | 13/7 |
47 | 1095.146 | |
48 | 1118.447 | |
49 | 1141.748 | |
50 | 1165.049 | |
51 | 1188.35 | |
52 | 1211.65 | |
53 | 1234.951 | |
54 | 1258.252 | |
55 | 1281.553 | 44/21 |
56 | 1304.854 | |
57 | 1328.155 | |
58 | 1351.456 | |
59 | 1374.757 | |
60 | 1398.058 | |
61 | 1421.359 | |
62 | 1444.66 | |
63 | 1467.961 | 7/3 |
64 | 1491.262 | |
65 | 1514.563 | |
66 | 1537.864 | 17/7 |
67 | 1561.165 | |
68 | 1584.466 | 5/2 |
69 | 1607.767 | 38/15 |
70 | 1631.068 | |
71 | 1654.369 | 13/5 |
72 | 1677.67 | 29/11 |
73 | 1700.971 | |
74 | 1724.272 | |
75 | 1747.573 | |
76 | 1770.874 | 25/9 |
77 | 1794.175 | 31/11 |
78 | 1817.476 | |
79 | 1840.777 | |
80 | 1864.078 | 44/15 |
81 | 1887.379 | |
82 | 1910.68 | |
83 | 1933.981 | |
84 | 1957.282 | |
85 | 1980.583 | 22/7 |
86 | 2003.883 | |
87 | 2027.184 | |
88 | 2050.485 | |
89 | 2073.786 | |
90 | 2097.087 | |
91 | 2120.388 | 17/5 |
92 | 2143.689 | |
93 | 2166.99 | 7/2 |
94 | 2190.291 | |
95 | 2213.592 | |
96 | 2236.893 | |
97 | 2260.194 | |
98 | 2283.495 | |
99 | 2306.796 | |
100 | 2330.097 | |
101 | 2353.398 | 35/9 |
102 | 2376.699 | |
103 | 2400 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +11.7 | +8.7 | +0.0 | +9.8 | -2.9 | +9.8 | +11.7 | -5.9 | -1.8 | -3.7 | +8.7 |
Relative (%) | +50.0 | +37.4 | +0.0 | +42.1 | -12.6 | +42.1 | +50.0 | -25.1 | -7.9 | -16.1 | +37.4 | |
Steps (reduced) |
52 (52) |
82 (82) |
103 (0) |
120 (17) |
133 (30) |
145 (42) |
155 (52) |
163 (60) |
171 (68) |
178 (75) |
185 (82) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +10.0 | -1.8 | -4.8 | +0.0 | +11.5 | +5.8 | +5.4 | +9.8 | -4.8 | +7.9 | +0.9 |
Relative (%) | +42.7 | -7.9 | -20.5 | +0.0 | +49.6 | +24.9 | +23.2 | +42.1 | -20.4 | +33.9 | +3.7 | |
Steps (reduced) |
191 (88) |
196 (93) |
201 (98) |
206 (0) |
211 (5) |
215 (9) |
219 (13) |
223 (17) |
226 (20) |
230 (24) |
233 (27) |