10009edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 10008edo 10009edo 10010edo →
Prime factorization 10009 (prime)
Step size 0.119892¢ 
Fifth 5855\10009 (701.968¢)
Semitones (A1:m2) 949:752 (113.8¢ : 90.16¢)
Consistency limit 9
Distinct consistency limit 9

10009 equal divisions of the octave (abbreviated 10009edo or 10009ed2), also called 10009-tone equal temperament (10009tet) or 10009 equal temperament (10009et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 10009 equal parts of about 0.12 ¢ each. Each step represents a frequency ratio of 21/10009, or the 10009th root of 2.

Theory

10009edo is consistent to the 9-odd-limit. It can be used in the 2.3.5.7.13.19.29.31.41.47 subgroup, tempering out 60025/60021, 138240/138229, 140625/140608, 482125/482112, 4751360/4750893, 739375/739328, 5137600/5137263, 19552/19551 and 103936/103935. Using the 2.3.7.13.23.31 subgroup, it tempers out 8464/8463.

Prime harmonics

Approximation of prime harmonics in 10009edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.0000 +0.0132 -0.0214 +0.0221 -0.0541 +0.0358 -0.0498 +0.0592 -0.0398 +0.0561 +0.0538
Relative (%) +0.0 +11.0 -17.8 +18.5 -45.1 +29.9 -41.6 +49.4 -33.2 +46.8 +44.9
Steps
(reduced)
10009
(0)
15864
(5855)
23240
(3222)
28099
(8081)
34625
(4598)
37038
(7011)
40911
(875)
42518
(2482)
45276
(5240)
48624
(8588)
49587
(9551)

Subsets and supersets

10009edo is the 1231st prime edo. 20018edo, which doubles it, gives a good correction to the harmonic 11.

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [15864 -10009 [10009 15864]] -0.0042 0.0042 3.50
2.3.5 [56 -91 38, [-304 79 77 [10009 15864 23240]] +0.0003 0.0072 6.01
2.3.5.7 [-2 -3 15 -10, [-48 0 11 8, [5 -44 17 9 [10009 15864 23240 28099]] -0.0018 0.0071 5.92