383edo
383edo is the equal division of the octave into 383 parts of 3.13316 cents each.
Theory
383edo is distinctly consistent through the 15-odd-limit, and tempers out 32805/32768 (schisma) in the 5-limit; 2401/2400 in the 7-limit; 6250/6237, 4000/3993 and 3025/3024 in the 11-limit; and 625/624, 1575/1573 and 2080/2079 in the 13-limit and it supports sesquiquartififths.
383edo is the 76th prime edo.
Prime harmonics
Script error: No such module "primes_in_edo".
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [-607 383⟩ | [⟨383 607]] | +0.0402 | 0.0402 | 1.28 |
2.3.5 | 32805/32768, [-8 -55 41⟩ | [⟨383 607 889]] | +0.1610 | 0.1741 | 5.55 |
2.3.5.7 | 2401/2400, 32805/32768, 68359375/68024448 | [⟨383 607 889 1075]] | +0.1813 | 0.1548 | 4.94 |
2.3.5.7.11 | 2401/2400, 3025/3024, 4000/3993, 32805/32768 | [⟨383 607 889 1075 1325]] | +0.1382 | 0.1631 | 5.20 |
2.3.5.7.11.13 | 625/624, 1575/1573, 2080/2079, 2401/2400, 10985/10976 | [⟨383 607 889 1075 1325 1417]] | +0.1531 | 0.1525 | 4.87 |
Rank-2 temperaments
Periods per octave |
Generator (reduced) |
Cents (reduced) |
Associated ratio |
Temperaments |
---|---|---|---|---|
1 | 56\383 | 175.46 | 448/405 | Sesquiquartififths |
1 | 133\373 | 416.71 | 14/11 | Unthirds |
1 | 159\383 | 498.17 | 4/3 | Helmholtz |