35edo

From Xenharmonic Wiki
Revision as of 11:21, 1 July 2011 by Wikispaces>xenwolf (**Imported revision 239658921 - Original comment: **)
Jump to navigation Jump to search

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author xenwolf and made on 2011-07-01 11:21:50 UTC.
The original revision id was 239658921.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

=<span style="color: #ff4100;">35 tone equal temperament</span>= 

35-tET or 35-[[edo|EDO]], refers to a tuning system which divides the octave into 35 steps of approximately [[cent|34.29¢]] each.

As 35 is 5 times 7, 35edo allows for mixing the two smallest xenharmonic [[macrotonal edos]]: [[5edo]] and [[7edo]]. A single degree of 35edo represents the difference between 7edo's narrow fifth of 685.71¢ and 5edo's wide fifth of 720¢.

A good beggining for start to play 35-EDO is with the Sub-diatonic scale (Pentadiatonic scale), that is a [[MOS]] of 3L2s: L s L L s; in 35-EDO is: 9 4 9 9 4

==Intervals== 
|| Degrees of 35-EDO || Cents value ||
|| 0 || 0 ||
|| 1 || 34,29 ||
|| 2 || 68,57 ||
|| 3 || 102,86 ||
|| 4 || 137,14 ||
|| 5 || 171,43 ||
|| 6 || 205,71 ||
|| 7 || 240 ||
|| 8 || 274,29 ||
|| 9 || 308,57 ||
|| 10 || 342,86 ||
|| 11 || 377,14 ||
|| 12 || 411,43 ||
|| 13 || 445,71 ||
|| 14 || 480 ||
|| 15 || 514,29 ||
|| 16 || 548,57 ||
|| 17 || 582,86 ||
|| 18 || 617,14 ||
|| 19 || 651,43 ||
|| 20 || 685,71 ||
|| 21 || 720 ||
|| 22 || 754,29 ||
|| 23 || 788,57 ||
|| 24 || 822,86 ||
|| 25 || 857,15 ||
|| 26 || 891,43 ||
|| 27 || 925,71 ||
|| 28 || 960 ||
|| 29 || 994,29 ||
|| 30 || 1028,57 ||
|| 31 || 1062,86 ||
|| 32 || 1097,14 ||
|| 33 || 1131,43 ||
|| 34 || 1165,71 ||

Original HTML content:

<html><head><title>35edo</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="x35 tone equal temperament"></a><!-- ws:end:WikiTextHeadingRule:0 --><span style="color: #ff4100;">35 tone equal temperament</span></h1>
 <br />
35-tET or 35-<a class="wiki_link" href="/edo">EDO</a>, refers to a tuning system which divides the octave into 35 steps of approximately <a class="wiki_link" href="/cent">34.29¢</a> each.<br />
<br />
As 35 is 5 times 7, 35edo allows for mixing the two smallest xenharmonic <a class="wiki_link" href="/macrotonal%20edos">macrotonal edos</a>: <a class="wiki_link" href="/5edo">5edo</a> and <a class="wiki_link" href="/7edo">7edo</a>. A single degree of 35edo represents the difference between 7edo's narrow fifth of 685.71¢ and 5edo's wide fifth of 720¢.<br />
<br />
A good beggining for start to play 35-EDO is with the Sub-diatonic scale (Pentadiatonic scale), that is a <a class="wiki_link" href="/MOS">MOS</a> of 3L2s: L s L L s; in 35-EDO is: 9 4 9 9 4<br />
<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h2&gt; --><h2 id="toc1"><a name="x35 tone equal temperament-Intervals"></a><!-- ws:end:WikiTextHeadingRule:2 -->Intervals</h2>
 

<table class="wiki_table">
    <tr>
        <td>Degrees of 35-EDO<br />
</td>
        <td>Cents value<br />
</td>
    </tr>
    <tr>
        <td>0<br />
</td>
        <td>0<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>34,29<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>68,57<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>102,86<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>137,14<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>171,43<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>205,71<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>240<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>274,29<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>308,57<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>342,86<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>377,14<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>411,43<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>445,71<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>480<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>514,29<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>548,57<br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>582,86<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>617,14<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>651,43<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>685,71<br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td>720<br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td>754,29<br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>788,57<br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>822,86<br />
</td>
    </tr>
    <tr>
        <td>25<br />
</td>
        <td>857,15<br />
</td>
    </tr>
    <tr>
        <td>26<br />
</td>
        <td>891,43<br />
</td>
    </tr>
    <tr>
        <td>27<br />
</td>
        <td>925,71<br />
</td>
    </tr>
    <tr>
        <td>28<br />
</td>
        <td>960<br />
</td>
    </tr>
    <tr>
        <td>29<br />
</td>
        <td>994,29<br />
</td>
    </tr>
    <tr>
        <td>30<br />
</td>
        <td>1028,57<br />
</td>
    </tr>
    <tr>
        <td>31<br />
</td>
        <td>1062,86<br />
</td>
    </tr>
    <tr>
        <td>32<br />
</td>
        <td>1097,14<br />
</td>
    </tr>
    <tr>
        <td>33<br />
</td>
        <td>1131,43<br />
</td>
    </tr>
    <tr>
        <td>34<br />
</td>
        <td>1165,71<br />
</td>
    </tr>
</table>

</body></html>