14edf

From Xenharmonic Wiki
Revision as of 22:35, 20 February 2019 by Moremajorthanmajor (talk | contribs)
Jump to navigation Jump to search

Division of the just perfect fifth into 14 equal parts (14EDF) is related to 24 edo, but with the 3/2 rather than the 2/1 being just. The octave is about 3.3514 cents stretched and the step size is about 50.1396 cents. The patent val has a generally sharp tendency for harmonics up to 22, with the exception for 7, 14, and 21.

Lookalikes: 24edo, 38edt

Intervals

ed31\54 ed121/81 ed3/2 Golden (~ed10\17) ed34\57 (~47ed4!) Approximate Ratios*
1 49.20635 49.6297 50.1396 50.41825 51.1278 1/1
2 98.4127 99.2594 100.2793 100.8365 102.2556 33/32, 34/33
3 147.61905 148.8891 150.4189 151.2547 153.3835 17/16, 18/17
4 196.8254 198.5188 200.5586 201.673 204.5113 12/11
5 246.03175 248.1485 250.6982 252.0912 255.6391 9/8
6 295.2381 297.782 300.8379 302.5095 306.7669 22/19
7 344.4444 347.408 350.9775 352.9277 357.8947 19/16
8 393.6508 397.03765 401.1171 403.346 409.0226 11/9
9 442.8571 446.66735 451.2568 453.7642 460.1504 24/19
10 492.0635 496.2971 501.3964 504.1825 511.2781 22/17
11 541.2698 545.9268 551.536 554.6007 562.406 4/3
12 590.4762 595.5565 601.6757 605.019 613.5338 11/8
13 639.6825 645.1862 651.8154 655.4372 664.66165 17/12
14 688.8889 694.8158 701.955 705.85545 715.7895 16/11
15 738.0952 744.4456 752.0946 756.2736 766.9173 3/2
16 787.3016 794.0753 802.2343 806.6919 818.0451 17/11
17 836.5079 843.705 852.3739 857.1102 869.1729 19/12
18 885.7143 893.3347 902.5136 907.5284 920.30075 18/11
19 934.9206 942.9644 952.6532 957.9467 971.4286 32/19
20 984.127 992.5941 1002.7929 1008.3649 1022.5564 19/11
21 1033.333 1042.2238 1052.9235 1058.7832 1073.6842 16/9
22 1082.5397 1091.8535 1103.0721 1109.2014 1124.812 11/6
23 1131.7646 1141.4832 1153.2118 1159.6297 1175.93985 17/9, 32/17
24 1180.9524 1191.1129 1203.3514 1210.0379 1227.0677 33/17, 64/33
2/1