14edf

From Xenharmonic Wiki
Revision as of 22:10, 20 February 2019 by Moremajorthanmajor (talk | contribs)
Jump to navigation Jump to search

Division of the just perfect fifth into 14 equal parts (14EDF) is related to 24 edo, but with the 3/2 rather than the 2/1 being just. The octave is about 3.3514 cents stretched and the step size is about 50.1396 cents. The patent val has a generally sharp tendency for harmonics up to 22, with the exception for 7, 14, and 21.

Lookalikes: 24edo, 38edt

Intervals

ed31\54 ed121/81 ed3/2 Golden (~ed10\17) ed34\57 (~47ed4!)
1 49.20635 49.6297 50.1396 50.41825 51.1278
2 98.4127 99.2594 100.2793 100.8365 102.2556
3 147.61905 148.8891 150.4189 151.2547 153.3835
4 196.8254 198.5188 200.5586 201.673 204.5113
5 246.03175 248.1485 250.6982 252.0912 255.6391
6 295.2381 297.782 300.8379 302.5095 306.7669
7 344.4444 347.408 350.9775 352.9277 357.8947
8 393.6508 397.03765 401.1171 403.346 409.0226
9 442.8571 446.66735 451.2568 453.7642 460.1504
10 492.0635 496.2971 501.3964 504.1825 511.2781
11 541.2698 545.9268 551.536 554.6007 562.406
12 590.4762 595.5565 601.6757 605.019 613.5338
13 639.6825 645.1862 651.8154 655.4372 664.66165
14 688.8889 694.8158 701.955 705.85545 715.7895
15 738.0952 744.4456 752.0946 756.2736 766.9173
16 787.3016 794.0753 802.2343 806.6919 818.0451
17 836.5079 843.705 852.3739 857.1102 869.1729
18 885.7143 893.3347 902.5136 907.5284 920.30075
19 934.9206 942.9644 952.6532 957.9467 971.4286
20 984.127 992.5941 1002.7929 1008.3649 1022.5564
21 1033.333 1042.2238 1052.9235 1058.7832 1073.6842
22 1082.5397 1091.8535 1103.0721 1109.2014 1124.812
23 1131.7646 1141.4832 1153.2118 1159.6297 1175.93985
24 1180.9524 1191.1129 1203.3514 1210.0379 1227.0677