95ed5
Division of the 5th harmonic into 95 equal parts (95ed5) is related to 41 edo, but with the 5/1 rather than the 2/1 being just. The octave is about 2.5143 cents stretched and the step size about 29.3296 cents. This tuning has a generally sharp tendency for harmonics up to 12. Unlike 41edo, it is only consistent up to the 12-integer-limit, with discrepancy for the 13th harmonic.
degree | cents value | corresponding JI intervals |
comments |
---|---|---|---|
0 | 0.0000 | exact 1/1 | |
1 | 29.3296 | ||
2 | 58.6592 | ||
3 | 87.9889 | 81/77 | |
4 | 117.3185 | ||
5 | 146.6481 | 49/45 | |
6 | 175.9777 | 448/405 | |
7 | 205.3073 | ||
8 | 234.6369 | 55/48, 63/55 | |
9 | 263.9666 | 220/189 | |
10 | 293.2962 | ||
11 | 322.6258 | 135/112 | |
12 | 351.9554 | 60/49 | |
13 | 381.2850 | pseudo-5/4 | |
14 | 410.6147 | 308/243 | |
15 | 439.9443 | ||
16 | 469.2739 | 21/16 | |
17 | 498.6035 | 4/3 | |
18 | 527.9331 | ||
19 | 557.2627 | 243/176 | |
20 | 586.5924 | 108/77, 275/196 | |
21 | 615.9220 | ||
22 | 645.2516 | 196/135 | |
23 | 674.5812 | 2025/1372 | |
24 | 703.9108 | pseudo-3/2 | |
25 | 733.2405 | 84/55, 55/36 | |
26 | 762.5701 | ||
27 | 791.8997 | ||
28 | 821.2293 | 45/28 | |
29 | 850.5589 | ||
30 | 879.8885 | 539/324 | pseudo-5/3 |
31 | 909.2182 | 1232/729, 3645/2156 | |
32 | 938.5478 | ||
33 | 967.8774 | 7/4 | |
34 | 997.2070 | 16/9 | |
35 | 1026.5366 | ||
36 | 1055.8662 | 81/44 | |
37 | 1085.1959 | 144/77, 275/147 | |
38 | 1114.5255 | ||
39 | 1143.8551 | 784/405 | |
40 | 1173.1847 | 675/343 | |
41 | 1202.5143 | 441/220 | pseudo-octave |
42 | 1231.8440 | 112/55, 55/27 | |
43 | 1261.1736 | ||
44 | 1290.5032 | ||
45 | 1319.8328 | 15/7 | |
46 | 1349.1624 | ||
47 | 1378.4920 | 539/243 | |
48 | 1407.8217 | 1215/539 | |
49 | 1437.1513 | ||
50 | 1466.4809 | 7/3 | |
51 | 1495.8105 | ||
52 | 1525.1401 | ||
53 | 1554.4698 | 27/11, 275/112 | |
54 | 1583.7994 | 1100/441 | pseudo-5/2 |
55 | 1613.1290 | 343/135 | |
56 | 1642.4586 | 2025/784 | |
57 | 1671.7882 | ||
58 | 1701.1178 | 147/55, 385/144 | |
59 | 1730.4475 | 220/81 | |
60 | 1759.7771 | ||
61 | 1789.1067 | 45/16 | |
62 | 1818.4363 | 20/7 | |
63 | 1847.7659 | ||
64 | 1877.0956 | 2156/729, 3645/1232 | |
65 | 1906.4252 | 1620/539 | pseudo-3/1 |
66 | 1935.7548 | ||
67 | 1965.0844 | 28/9 | |
68 | 1994.4140 | ||
69 | 2023.7436 | ||
70 | 2053.0733 | 36/11, 275/84 | |
71 | 2082.4029 | pseudo-10/3 | |
72 | 2111.7325 | 1372/405 | |
73 | 2141.0621 | 675/196 | |
74 | 2170.3917 | ||
75 | 2199.7214 | 196/55, 385/108 | |
76 | 2229.0510 | 880/243 | |
77 | 2258.3806 | ||
78 | 2287.7102 | 15/4 | |
79 | 2317.0398 | 80/21 | |
80 | 2346.3694 | ||
81 | 2375.6991 | 1215/308 | |
82 | 2405.0287 | pseudo-4/1 | |
83 | 2434.3583 | 49/12 | |
84 | 2463.6879 | 112/27 | |
85 | 2493.0175 | ||
86 | 2522.3472 | 189/44 | |
87 | 2551.6768 | 48/11, 275/63 | |
88 | 2581.0064 | ||
89 | 2610.3360 | 2025/448 | |
90 | 2639.6656 | 225/49 | |
91 | 2668.9952 | ||
92 | 2698.3249 | 385/81 | |
93 | 2727.6545 | ||
94 | 2756.9841 | ||
95 | 2786.3137 | exact 5/1 | just major third plus two octaves |
95ed5 can also be thought of as a generator of the 11-limit temperament which tempers out 3025/3024, 184877/184320, and 2460375/2458624, which is a cluster temperament with 41 clusters of notes in an octave. While the small chroma interval between adjacent notes in each cluster represents 385/384, 441/440, and 1479016/1476225 tempered together, the step interval is very versatile, representing 16807/16500 ~ 273375/268912 ~ 295245/290521 ~ 12100/11907 ~ 64/63 all tempered together. This temperament is supported by 41edo, 491edo (491e val), and 532edo (532d val) among others.