User:BudjarnLambeth/Sandbox2
Title1
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -4.1 | -8.5 | -8.2 | +4.1 | -12.6 | +19.5 | -12.3 | -16.9 | +0.0 | +34.3 | -16.7 |
Relative (%) | -4.1 | -8.5 | -8.2 | +4.1 | -12.6 | +19.6 | -12.4 | -17.0 | +0.0 | +34.4 | -16.7 | |
Steps (reduced) |
12 (12) |
19 (19) |
24 (24) |
28 (28) |
31 (31) |
34 (34) |
36 (36) |
38 (38) |
40 (0) |
42 (2) |
43 (3) |
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.4 | +3.4 | +6.7 | +21.5 | +6.7 | +40.7 | +10.1 | +6.7 | +24.9 | -39.9 | +10.1 |
Relative (%) | +3.3 | +3.3 | +6.7 | +21.4 | +6.7 | +40.6 | +10.0 | +6.7 | +24.8 | -39.8 | +10.0 | |
Steps (reduced) |
12 (5) |
19 (5) |
24 (3) |
28 (0) |
31 (3) |
34 (6) |
36 (1) |
38 (3) |
40 (5) |
41 (6) |
43 (1) |
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.2 | +0.0 | +2.5 | +16.6 | +1.2 | +34.7 | +3.7 | +0.0 | +17.8 | -47.1 | +2.5 |
Relative (%) | +1.2 | +0.0 | +2.5 | +16.6 | +1.2 | +34.6 | +3.7 | +0.0 | +17.8 | -47.1 | +2.5 | |
Steps (reduced) |
12 (12) |
19 (0) |
24 (5) |
28 (9) |
31 (12) |
34 (15) |
36 (17) |
38 (0) |
40 (2) |
41 (3) |
43 (5) |
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.8 | -0.8 | +1.5 | +15.5 | +0.0 | +33.3 | +2.3 | -1.5 | +16.2 | -48.7 | +0.8 |
Relative (%) | +0.8 | -0.8 | +1.5 | +15.4 | +0.0 | +33.3 | +2.3 | -1.5 | +16.2 | -48.7 | +0.8 | |
Steps (reduced) |
12 (12) |
19 (19) |
24 (24) |
28 (28) |
31 (0) |
34 (3) |
36 (5) |
38 (7) |
40 (9) |
41 (10) |
43 (12) |
Title2
Octave stretch or compression
72edo's approximations of harmonics 3, 5, 7, 11, 13 and 17 can all be improved by slightly stretching the octave, using tunings such as 114edt or 186ed6. 114edt is quite hard and might be best for the 13- or 17-limit specifically. 186ed6 is milder and less disruptive, suitable for 11-limit and/or full 19-limit harmonies.
What follows is a comparison of stretched-octave 72edo tunings.
- 72edo
- Step size: NNN ¢, octave size: 1200.00 ¢
Pure-octaves 72edo approximates all harmonics up to 16 within NNN ¢.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | -1.96 | +0.00 | -2.98 | -1.96 | -2.16 | +0.00 | -3.91 | -2.98 | -1.32 | -1.96 |
Relative (%) | +0.0 | -11.7 | +0.0 | -17.9 | -11.7 | -13.0 | +0.0 | -23.5 | -17.9 | -7.9 | -11.7 | |
Steps (reduced) |
72 (0) |
114 (42) |
144 (0) |
167 (23) |
186 (42) |
202 (58) |
216 (0) |
228 (12) |
239 (23) |
249 (33) |
258 (42) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -7.19 | -2.16 | -4.94 | +0.00 | -4.96 | -3.91 | +2.49 | -2.98 | -4.11 | -1.32 | +5.06 | -1.96 |
Relative (%) | -43.2 | -13.0 | -29.6 | +0.0 | -29.7 | -23.5 | +14.9 | -17.9 | -24.7 | -7.9 | +30.4 | -11.7 | |
Steps (reduced) |
266 (50) |
274 (58) |
281 (65) |
288 (0) |
294 (6) |
300 (12) |
306 (18) |
311 (23) |
316 (28) |
321 (33) |
326 (38) |
330 (42) |
- Step size: NNN ¢, octave size: 1200.55 ¢
Stretching the octave of 72edo by around NNN ¢ results in unnoticeably better primes 3, 5, 7, 11 and 13, but an unnoticeably worse prime 2. This approximates all harmonics up to 16 within NNN ¢. The tuning EDONOI does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.55 | -1.09 | +1.09 | -1.71 | -0.55 | -0.63 | +1.64 | -2.18 | -1.17 | +0.57 | +0.00 |
Relative (%) | +3.3 | -6.5 | +6.5 | -10.3 | -3.3 | -3.8 | +9.8 | -13.1 | -7.0 | +3.4 | +0.0 | |
Steps (reduced) |
72 (72) |
114 (114) |
144 (144) |
167 (167) |
186 (186) |
202 (202) |
216 (216) |
228 (228) |
239 (239) |
249 (249) |
258 (0) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -5.18 | -0.08 | -2.81 | +2.18 | -2.73 | -1.64 | +4.81 | -0.62 | -1.72 | +1.11 | +7.53 | +0.55 |
Relative (%) | -31.1 | -0.5 | -16.8 | +13.1 | -16.4 | -9.8 | +28.8 | -3.7 | -10.3 | +6.7 | +45.2 | +3.3 | |
Steps (reduced) |
266 (8) |
274 (16) |
281 (23) |
288 (30) |
294 (36) |
300 (42) |
306 (48) |
311 (53) |
316 (58) |
321 (63) |
326 (68) |
330 (72) |
- Step size: NNN ¢, octave size: 1200.76 ¢
Stretching the octave of 72edo by around NNN ¢ results in unnoticeably better primes 3, 5, 7, 11 and 13, but an unnoticeably worse prime 2. This approximates all harmonics up to 16 within NNN ¢. Its tuning 186ed6 does this. 72et's 11-limit WE tuning and 11-limit TE tuning both do this, their octave differing from 186ed6's by only 0.02 ¢. The tuning 202ed7 does this also, it's octave differing from 186ed6 by less than a hundredth of a cent.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.76 | -0.76 | +1.51 | -1.23 | +0.00 | -0.04 | +2.27 | -1.51 | -0.47 | +1.30 | +0.76 |
Relative (%) | +4.5 | -4.5 | +9.1 | -7.3 | +0.0 | -0.2 | +13.6 | -9.1 | -2.8 | +7.8 | +4.5 | |
Steps (reduced) |
72 (72) |
114 (114) |
144 (144) |
167 (167) |
186 (0) |
202 (16) |
216 (30) |
228 (42) |
239 (53) |
249 (63) |
258 (72) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -4.40 | +0.72 | -1.98 | +3.03 | -1.87 | -0.76 | +5.70 | +0.29 | -0.79 | +2.06 | -8.19 | +1.51 |
Relative (%) | -26.4 | +4.3 | -11.9 | +18.2 | -11.2 | -4.5 | +34.2 | +1.7 | -4.8 | +12.3 | -49.1 | +9.1 | |
Steps (reduced) |
266 (80) |
274 (88) |
281 (95) |
288 (102) |
294 (108) |
300 (114) |
306 (120) |
311 (125) |
316 (130) |
321 (135) |
325 (139) |
330 (144) |
- Step size: 16.678 ¢, octave size: 1200.82 ¢
Stretching the octave of 72edo by around NNN ¢ results in unnoticeably better primes 3, 5, 7 and 13, but unnoticeably worse primes 2 and 11. This approximates all harmonics up to 16 within NNN ¢. The tuning ZPINAME does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.82 | -0.66 | +1.63 | -1.09 | +0.15 | +0.13 | +2.45 | -1.33 | -0.27 | +1.50 | +0.97 |
Relative (%) | +4.9 | -4.0 | +9.8 | -6.5 | +0.9 | +0.8 | +14.7 | -8.0 | -1.6 | +9.0 | +5.8 | |
Step | 72 | 114 | 144 | 167 | 186 | 202 | 216 | 228 | 239 | 249 | 258 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -4.18 | +0.95 | -1.75 | +3.26 | -1.62 | -0.51 | +5.95 | +0.54 | -0.53 | +2.32 | -7.92 | +1.78 |
Relative (%) | -25.1 | +5.7 | -10.5 | +19.6 | -9.7 | -3.1 | +35.7 | +3.3 | -3.2 | +13.9 | -47.5 | +10.7 | |
Step | 266 | 274 | 281 | 288 | 294 | 300 | 306 | 311 | 316 | 321 | 325 | 330 |
- Step size: 16.680 ¢, octave size: 1200.96 ¢
Stretching the octave of 72edo by around NNN ¢ results in unnoticeably better primes 3, 5, 7 and 13, but unnoticeably worse primes 2 and 11. This approximates all harmonics up to 16 within NNN ¢. Its SUBGROUP WE tuning and SUBGROUP TE tuning both do this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.96 | -0.44 | +1.92 | -0.75 | +0.52 | +0.53 | +2.88 | -0.87 | +0.21 | +2.00 | +1.48 |
Relative (%) | +5.8 | -2.6 | +11.5 | -4.5 | +3.1 | +3.2 | +17.3 | -5.2 | +1.2 | +12.0 | +8.9 | |
Step | 72 | 114 | 144 | 167 | 186 | 202 | 216 | 228 | 239 | 249 | 258 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -3.65 | +1.49 | -1.19 | +3.84 | -1.04 | +0.09 | +6.57 | +1.17 | +0.10 | +2.96 | -7.27 | +2.44 |
Relative (%) | -21.9 | +9.0 | -7.1 | +23.0 | -6.2 | +0.5 | +39.4 | +7.0 | +0.6 | +17.8 | -43.6 | +14.7 | |
Step | 266 | 274 | 281 | 288 | 294 | 300 | 306 | 311 | 316 | 321 | 325 | 330 |
- Step size: NNN ¢, octave size: 1201.23 ¢
Stretching the octave of 72edo by around NNN ¢ results in unnoticeably better primes 3, 5, 7 and 13, but unnoticeably worse primes 2 and 11. This approximates all harmonics up to 16 within NNN ¢. The tuning EDONOI does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.23 | +0.00 | +2.47 | -0.12 | +1.23 | +1.30 | +3.70 | +0.00 | +1.12 | +2.95 | +2.47 |
Relative (%) | +7.4 | +0.0 | +14.8 | -0.7 | +7.4 | +7.8 | +22.2 | +0.0 | +6.7 | +17.7 | +14.8 | |
Steps (reduced) |
72 (72) |
114 (0) |
144 (30) |
167 (53) |
186 (72) |
202 (88) |
216 (102) |
228 (0) |
239 (11) |
249 (21) |
258 (30) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.63 | +2.54 | -0.12 | +4.94 | +0.09 | +1.23 | +7.73 | +2.35 | +1.30 | +4.19 | -6.03 | +3.70 |
Relative (%) | -15.8 | +15.2 | -0.7 | +29.6 | +0.5 | +7.4 | +46.4 | +14.1 | +7.8 | +25.1 | -36.2 | +22.2 | |
Steps (reduced) |
266 (38) |
274 (46) |
281 (53) |
288 (60) |
294 (66) |
300 (72) |
306 (78) |
311 (83) |
316 (88) |
321 (93) |
325 (97) |
330 (102) |
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.28 | +0.08 | +2.57 | +0.00 | +1.36 | +1.45 | +3.85 | +0.16 | +1.28 | +3.13 | +2.65 |
Relative (%) | +7.7 | +0.5 | +15.4 | +0.0 | +8.2 | +8.7 | +23.1 | +1.0 | +7.7 | +18.7 | +15.9 | |
Steps (reduced) |
72 (72) |
114 (114) |
144 (144) |
167 (0) |
186 (19) |
202 (35) |
216 (49) |
228 (61) |
239 (72) |
249 (82) |
258 (91) |
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.38 | -1.35 | +0.76 | -2.10 | -0.97 | -1.09 | +1.14 | -2.70 | -1.72 | +0.00 | -0.59 |
Relative (%) | +2.3 | -8.1 | +4.6 | -12.6 | -5.8 | -6.5 | +6.9 | -16.2 | -10.3 | +0.0 | -3.5 | |
Steps (reduced) |
72 (72) |
114 (114) |
144 (144) |
167 (167) |
186 (186) |
202 (202) |
216 (216) |
228 (228) |
239 (239) |
249 (0) |
258 (9) |