19ed18/5
← 18ed18/5 | 19ed18/5 | 20ed18/5 → |
Script error: No such module "EDO_intro".
Theory
19ed18/5 is most notable for the fact that its one step is equal to the secor interval by, definition.
If considered in its own right, the regular temperament has good approximations for harmonics 5, 7, 8, and 12, all being sharp by roughly the same amount, therefore making the 18/5.5.7.8.12 subgroup the best for this tuning. There, it tempers out 81/80, 126/125, 225/224, 1728/1715, 5103/5000.
Integer harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -32.8 | -34.5 | +51.0 | +14.9 | +49.4 | +15.9 | +18.2 | +47.7 | -18.0 | +50.4 | +16.5 |
Relative (%) | -28.1 | -29.6 | +43.7 | +12.7 | +42.3 | +13.6 | +15.6 | +40.9 | -15.4 | +43.2 | +14.2 | |
Steps (reduced) |
10 (10) |
16 (16) |
21 (2) |
24 (5) |
27 (8) |
29 (10) |
31 (12) |
33 (14) |
34 (15) |
36 (17) |
37 (18) |