363edo

Revision as of 15:24, 9 November 2023 by FloraC (talk | contribs) (Adopt template: EDO intro; +prime error table; +subsets and supersets; -redundant categories)
← 362edo 363edo 364edo →
Prime factorization 3 × 112
Step size 3.30579 ¢ 
Fifth 212\363 (700.826 ¢)
Semitones (A1:m2) 32:29 (105.8 ¢ : 95.87 ¢)
Dual sharp fifth 213\363 (704.132 ¢) (→ 71\121)
Dual flat fifth 212\363 (700.826 ¢)
Dual major 2nd 62\363 (204.959 ¢)
Consistency limit 7
Distinct consistency limit 7

Template:EDO intro

Uinsg the patent val, the equal temperament tempers out 2401/2400 and 78732/78125 in the 7-limit; 243/242, 441/440 and 540/539 in the 11-limit; 351/350, 1716/1715 and 1575/1573 in the 13-limit; and provides the optimal patent val for jovis temperament.

Odd harmonics

Approximation of odd harmonics in 363edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -1.13 +0.46 -0.23 +1.05 +0.75 -0.86 -0.67 +0.83 +0.01 -1.36 -0.18
Relative (%) -34.1 +14.0 -7.0 +31.7 +22.6 -26.0 -20.1 +25.1 +0.2 -41.1 -5.3
Steps
(reduced)
575
(212)
843
(117)
1019
(293)
1151
(62)
1256
(167)
1343
(254)
1418
(329)
1484
(32)
1542
(90)
1594
(142)
1642
(190)

Subsets and supersets

Since 363 factors into 3 × 112, 363edo has subset edos 3, 11, 33, and 121.