137edo

Revision as of 21:18, 3 November 2023 by Francium (talk | contribs) (+regular temperament properties)
← 136edo 137edo 138edo →
Prime factorization 137 (prime)
Step size 8.75912 ¢ 
Fifth 80\137 (700.73 ¢)
Semitones (A1:m2) 12:11 (105.1 ¢ : 96.35 ¢)
Consistency limit 5
Distinct consistency limit 5

Template:EDO intro

Theory

137edo provides the optimal patent val for 7-limit orwell temperament and for the planar temperament tempering out 2430/2401. It tempers out 2109375/2097152 (semicomma) in the 5-limit; 225/224 and 1728/1715 in the 7-limit; 243/242 in the 11-limit; 351/350 in the 13-limit; 375/374 and 442/441 in the 17-limit; and 324/323 and 495/494 in the 19-limit.

Prime harmonics

Approximation of prime harmonics in 137edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 -1.23 -0.91 +3.44 +0.51 +0.35 +0.15 +0.30 +2.38 +4.00 +2.41
Relative (%) +0.0 -14.0 -10.4 +39.2 +5.8 +4.0 +1.8 +3.4 +27.2 +45.7 +27.5
Steps
(reduced)
137
(0)
217
(80)
318
(44)
385
(111)
474
(63)
507
(96)
560
(12)
582
(34)
620
(72)
666
(118)
679
(131)

Subsets and supersets

Since 137 is the 33rd prime number, 137edo has no proper divisors aside from 1.

274edo, which doubles it, provides a correction for its approximation to harmonic 7.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [-217 137 137 217] 0.3865 0.3866 4.41
2.3.5 [-21 3 7, [-13 17 -6 137 217 318] 0.3887 0.3157 3.60

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator
(reduced)
Cents
(reduced)
Associated
ratio
Temperaments
1 3\137 26.28 1594323/1562500 Sfourth (5-limit)
1 4\137 35.04 1990656/1953125 Gammic
1 31\137 271.53 75/64 Orson
1 36\137 315.33 6/5 Parakleismic
1 59\137 516.79 27/20 Gravity
1 63\137 551.82 9765625/7077888 Emka (5-limit)

Diagrams

A diagram of 7-limit orwell based on the 31\137edo generator:

 

137edo_MOS_031.svg