961edo

From Xenharmonic Wiki
Revision as of 15:03, 2 October 2023 by Francium (talk | contribs) (Created page with "{{Infobox ET}} {{EDO intro|961}} ==Theory== 961et tempers out 32805/32768 in the 5-limit; 14348907/14336000, 4375/4374 and 65625/65536 in the 7-limit; 10192158...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
← 960edo 961edo 962edo →
Prime factorization 312
Step size 1.2487 ¢ 
Fifth 562\961 (701.769 ¢)
Semitones (A1:m2) 90:73 (112.4 ¢ : 91.16 ¢)
Consistency limit 5
Distinct consistency limit 5

Template:EDO intro

Theory

961et tempers out 32805/32768 in the 5-limit; 14348907/14336000, 4375/4374 and 65625/65536 in the 7-limit; 1019215872/1019046875, 2097152/2096325, 26214400/26198073, 5767168/5764801 and 3294225/3294172 in the 11-limit.

Odd harmonics

Approximation of odd harmonics in 961edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -0.186 -0.466 +0.165 -0.372 +0.607 -0.153 +0.597 -0.065 -0.323 -0.021 -0.179
Relative (%) -14.9 -37.3 +13.2 -29.8 +48.6 -12.3 +47.8 -5.2 -25.8 -1.7 -14.3
Steps
(reduced)
1523
(562)
2231
(309)
2698
(776)
3046
(163)
3325
(442)
3556
(673)
3755
(872)
3928
(84)
4082
(238)
4221
(377)
4347
(503)

Subsets and supersets

961 factors into 312 with 31edo as subset edo.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [-1523 961 961 1523] 0.0587 0.0587 4.70
2.3.5 32805/32768, [-22 -137 103 961 1523 2231] 0.1060 0.0823 6.59
2.3.5.7 4375/4374, 32805/32768, 65625/65536 961 1523 2231 2698] 0.0648 0.1008 8.01

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator
(reduced)
Cents
(reduced)
Associated
ratio
Temperaments
1 399\961 498.231 4/3 Helmholtz / Pontiac

Scales