333edo

Revision as of 04:02, 4 September 2023 by FloraC (talk | contribs) (Adopt template: EDO intro; linking; +prime error table; -typo; -redundant categories)
← 332edo 333edo 334edo →
Prime factorization 32 × 37
Step size 3.6036 ¢ 
Fifth 195\333 (702.703 ¢) (→ 65\111)
Semitones (A1:m2) 33:24 (118.9 ¢ : 86.49 ¢)
Consistency limit 7
Distinct consistency limit 7

Template:EDO intro

The equal temperament tempers out 15625/15552 in the 5-limit and 5120/5103 in the 7-limit, so it supports countercata. In the 11-limit it tempers out 1375/1372 and 4000/3993, and in the 13-limit 325/324, 364/363, 625/624 and 676/675, and provides the optimal patent val for the rank-2 temperament novemkleismic, for the rank-3 temperament tempering out 325/324, 625/624 and 676/675, the rank-4 temperament tempering out 325/324 and 1375/1372, and the rank-5 temperament tempering out 325/324.

Prime harmonics

Approximation of prime harmonics in 333edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 +0.75 -0.73 +0.54 +0.03 -0.89 -0.45 +1.59 -1.25 +1.05 +0.91
Relative (%) +0.0 +20.7 -20.2 +15.1 +0.9 -24.6 -12.5 +44.0 -34.6 +29.2 +25.3
Steps
(reduced)
333
(0)
528
(195)
773
(107)
935
(269)
1152
(153)
1232
(233)
1361
(29)
1415
(83)
1506
(174)
1618
(286)
1650
(318)