← 113edo 114edo 115edo →
Prime factorization 2 × 3 × 19
Step size 10.5263 ¢ 
Fifth 67\114 (705.263 ¢)
Semitones (A1:m2) 13:7 (136.8 ¢ : 73.68 ¢)
Consistency limit 7
Distinct consistency limit 7

114edo is the equal division of the octave into 114 parts, each of 10.52632 cents. In the 5-limit it tempers out 2048/2025, in the 7-limit 245/243, in the 11-limit 121/120, 176/175 and 117440512/117406179, in the 13-limit 196/195 and 325/324, in the 17-limit 136/135 and 154/153, in the 19-limit 286/285 and 343/342. These commas make for 114edo being an excellent tuning for shrutar temperament; it is in fact the optimal patent val for shrutar in the 11- 13- 17- and 19-limit, as well as the rank three bisector temperament.

Prime harmonics

Approximation of odd harmonics in 114edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) +3.31 +3.16 -0.40 -3.91 -3.95 +1.58 -4.06 +0.31 -2.78 +2.90 +3.30
Relative (%) +31.4 +30.0 -3.8 -37.1 -37.5 +15.0 -38.6 +2.9 -26.4 +27.6 +31.4
Steps
(reduced)
181
(67)
265
(37)
320
(92)
361
(19)
394
(52)
422
(80)
445
(103)
466
(10)
484
(28)
501
(45)
516
(60)

Period of 19-limit Shrutar

Degree Cents Difference from 68edo
2 21.05263 3.40557¢
3 31.57895 -3.71517¢
5 52.63158 -0.3096¢
7 73.68421 3.096¢
8 84.21053 -4.02477¢
10 105.26316 -0.619195¢
12 126.31579 2.78638¢
13 136.842105 -4.334365¢
15 157.89474 -0.9288¢
17 178.94737 2.47678¢
18 189.47369 -4.644¢
20 210.52632 -1.23839¢
22 231.57895 2.16718¢
23 242.10526 -4.953560372
25 263.157895 -1.548¢
27 284.21053 1.857585¢
29 305.26316 5.26316¢
30 315.78947 -1.857585¢
32 336.842105 1.548¢
34 357.89474 4.95356¢
35 368.42105 -2.16718¢
37 389.47368 1.23839¢
39 410.52632 4.64396¢
40 421.05263 -2.47678¢
42 442.10526 0.92879¢
44 463.157895 4.334365¢
45 473.68421 -2.78638¢
47 494.73684 0.619195¢
49 515.78947 4.02477¢
50 526.31579 -3.095975¢
52 547.36842 0.3096¢
54 568.42105 3.71517¢
55 578.94737 -3.40557¢