439edo

From Xenharmonic Wiki
Revision as of 11:09, 22 April 2023 by Francium (talk | contribs) (Created page with "{{Infobox ET}} {{EDO intro|439}} == Theory == 439et tempers out 703125/702464 in the 7-limit; 55296000/55240493, 100663296/100656875, 820125/819896, 2097152/2096325, 75937...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
← 438edo 439edo 440edo →
Prime factorization 439 (prime)
Step size 2.73349 ¢ 
Fifth 257\439 (702.506 ¢)
Semitones (A1:m2) 43:32 (117.5 ¢ : 87.47 ¢)
Consistency limit 3
Distinct consistency limit 3

Template:EDO intro

Theory

439et tempers out 703125/702464 in the 7-limit; 55296000/55240493, 100663296/100656875, 820125/819896, 2097152/2096325, 759375/758912, 131072/130977, 352947/352000, 85937500/85766121, 1879453125/1879048192, 184549376/184528125, 184877/184320, 3025/3024 and 1771561/1771470 in the 11-limit.

Prime harmonics

Approximation of prime harmonics in 439edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 +0.55 -0.89 -1.17 +0.85 -1.35 -1.08 +0.44 +0.43 +0.95 +0.29
Relative (%) +0.0 +20.1 -32.6 -42.9 +31.0 -49.3 -39.6 +16.0 +15.6 +34.6 +10.8
Steps
(reduced)
439
(0)
696
(257)
1019
(141)
1232
(354)
1519
(202)
1624
(307)
1794
(38)
1865
(109)
1986
(230)
2133
(377)
2175
(419)

Subsets and supersets

439edo is the 85th prime edo.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [696 -439 439 696] -0.1737 0.1737 6.35
2.3.15 15625/15552, [121 -64 -5 439 696 1715] -0.0867 0.1878 6.87
2.3.15.35 5120/5103, 15625/15552, 1992903750/1977326743 439 696 1715 2252] -0.0976 0.1637 5.99
2.3.15.35.11 540/539, 5120/5103, 15625/15552, 43923/43904 439 696 1715 2252 1519] -0.1270 0.1578 5.77
2.3.15.35.11.65 540/539, 1716/1715, 5120/5103, 4225/4224, 81675/81536 439 696 1715 2252 1519 2644] -0.1195 0.1450 5.30