Diasem is a max-variety-3 scale with step pattern 5L 2M 2s, equivalent to the semiquartal (5L 4s) mos with two of the small steps made larger and the other two made smaller. Diasem has two rotationally non-equivalent variants, right-hand diasem LMLSLMLSL and left-hand diasem LSLMLSLML; these are mirror images. It can be tuned as a 2.3.7 subgroup JI scale or a tempered version thereof. The fact that the small step of diatonic is made smaller results in 26edo and 31edo diasem having better melodic properties than the respective diatonic scales. The scale can be generated by an alternating chain of subminor thirds and supermajor seconds. The name "diasem" is a portmanteau of "diatonic" and "semiquartal" (or "semaphore") since its step sizes are intermediate between that of diatonic (5L 2s) and semiquartal (5L 4s); it is also a pun based on the diesis, which appears as the small step in the scale in the 31edo and 36edo tunings.

Comparison with semiquartal and diatonic in 62edo
Name Structure Step Sizes Graphical Representation
Semiquartal 5L4s 10\62, 3\62 ├─────────┼──┼─────────┼──┼─────────┼──┼─────────┼──┼─────────┤
Diasem 5L2m2s 10\62, 4\62, 2\62 ├─────────┼───┼─────────┼─┼─────────┼───┼─────────┼─┼─────────┤
Diatonic 5L2s 10\62, 6\62 ├─────────┼─────┼─────────╫─────────┼─────┼─────────╫─────────┤

Like superpyth, diasem is great for diatonic melodies in the 2.3.7 subgroup; however, it does not temper 64/63, adding two diesis-sized steps to what would normally be a diatonic scale. Not tempering 64/63 is actually quite useful, because it's the difference between only two 4/3 and a 7/4, so the error is spread over just two perfect fourths, unlike the syntonic comma where the error is spread out over four perfect fifths. As a result, the results of tempering out 81/80 are not as bad, because each fifth only needs to be bent by about half as much to achieve the same optimization for the 5-limit. So in the case of 2.3.7, it may actually be worth it to accept the addition of small step sizes in order to improve tuning accuracy. Another advantage of detempering the septimal comma is that it allows one to use both 9/8 and 8/7, as well as 21/16 and 4/3, in the same scale. Semaphore in a sense does the opposite of what superpyth does, exaggerating 64/63 to the point that 21/16 is no longer recognizable, and the small steps of diasem become equal to the medium steps.

Tunings

Diasem tunings
Tuning L:m:s Good Just Approximations other comments Degrees of the mode LMLSLMLSL
1 2 3 4 5 6 7 8
9/8 7/6 21/16 4/3 3/2 14/9 7/4 16/9
JI 7.479:2.309:1 Just 7/6, 8/7, and 3/2 203.910 266.871 470.781 498.045 701.955 764.916 968.826 996.090
21edo 3:2:1 23/16 and 39/32 171.429 285.714 457.143 514.286 685.714 800 971.429 1028.571
26edo 4:2:1 14/11, 8/7 and 11/8 184.615 276.923 461.538 507.692 692.308 784.615 969.231 1015.385
28edo 4:3:1 Pental thirds 171.429 300 471.429 514.286 685.714 814.286 985.714 1028.571
30edo 4:3:2 cross between Mavila and Semaphore 160 280 440 520 680 800 960 1040
31edo 5:2:1 Pental thirds and 7/5 193.548 270.968 464.516 503.226 696.774 774.194 967.742 1006.452
33edo 5:3:1 Septimal and Neogothic thirds and 10/9 181.818 290.909 472.727 509.091 690.909 763.636 981.818 1018.182
35edo 5:3:2

5:4:1

Uses 21/16 as inconsistent 4/3 171.429 274.286

308.571

445.714

480

514.286 685.714 788.571

822.857

960

994.286

1028.571
36edo 6:2:1 Septimal thirds and 3/2 200.000 266.667 466.667 500.000 700.000 766.667 966.667 1000.000
37edo 5:4:2 35/32 cross between Mavila and Semaphore 162.162 291.892 454.054 518.919 681.081 810.811 972.973 1037.838
38edo 6:3:1 189.474 [[1]] 473.684 505.263 694.737 789.474 978.947 1010.526
39edo 5:4:3 cross between Mavila and Semaphore 153.846 276.923 430.769 523.077 676.923 800 953.846 1046.154
40edo 6:3:2

6:4:1

Uses 21/16 as inconsistent 4/3 180 270

300

450

480

510 690 780

810

960

990

1020
41edo 7:2:1 204.878 263.415 468.293 497.561 702.439 760.976 965.854 995.122
42edo 6:5:1 Uses 21/16 as inconsistent 4/3 171.429 314.286 485.714 514.286 685.714 828.571 1000 1028.571
43edo 7:3:1 195.349 279.07 474.419 502.326 697.674 781.395 976.744 1004.651
44edo 6:4:3

6:5:2

11/10 (and 9/7) cross between Mavila and Semaphore 163.636 272.727

300

436.364

463.636

518.182 681.818 790.909

818.182

[[2]]

981.818

1036.364
45edo 7:3:2

7:4:1

186.667 266.667

293.333

453.333

480

506.667 693.333 773.333

800

960

986.667

1013.333
46edo 6:5:3

8:2:1

Neogothic thirds cross between Mavila and Semaphore

Gentle fifth

156.522

208.696

[[3]]

260.87

443.478

469.565

521.739

495.652

678.231

704.348

808.696

756.522

965.218 1043.418

991.314

47edo 7:4:2

7:5:1

Uses 21/16 as inconsistent 4/3 178.723 280.851

306.383

459.578

485.106

510.638 689.362 791.489

817.021

970.212

995.744

1021.27h
48edo 6:5:4

8:3:1

cross between Mavila and Semaphore 150

200

275 425

475

525

500

675

700

800

775

950

975

1050

1000

49edo 7:4:3

7:5:2

7:6:1

Uses 21/16 as inconsistent 4/3 171.429 269.388

293.878

318.367

440.817

465.756

489.796

514.286 685.714 [[4]]

808.163

832.653

955.102

979.592

1004.082

1028.571
50edo 8:3:2

8:4:1

192 264

288

456

480

504 696 768

792

960

984

1008
51edo 7:5:3

7:6:2

cross between Mavila and Semaphore 164.706 282.353

305.882

447.059

470.588

517.647 682.353 800

823.529

964.706

988.235

1035.294
52edo 8:5:1 Uses 21/16 as inconsistent 4/3 184.615 300 484.615 507.692 692.308 807.692 992.308 1015.385
53edo 7:5:4

7:6:3

27/20 cross between Mavila and Semaphore 158.491 271.698

294.34

429.189

452.831

520.755 679.245 792.453

815.094

950.944

973.585

1041.509
54edo 8:4:3

8:5:2

8:6:1

Septimal thirds

Neogothic thirds

Uses 21/16 as inconsistent 4/3 177.778 266.667

288.889

311.111

444.444

466.667

488.889

511.111 688.889 777.778

800

822.222

955.556

977.778

1000

1022.222
55edo 7:6:4 cross between Mavila and Semaphore 152.727 283.636 436.364 523.636 676.364 807.273 960 1047.273
56edo 8:5:3

8:7:1

Golden tuning

Uses 21/16 as inconsistent 4/3

171.429 278.571

321.429

450

492.857

514.286 685.714 792.857

814.286

964.286

985.714

1028.571
57edo 7:6:5 cross between Mavila and Semaphore 147.368 273.684 421.053 526.316 673.684 800 947.368 1052.684
58edo 8:5:4

8:6:3

8:7:2

(Septimal and) Neogothic thirds cross between Mavila and Semaphore 165.517 [[5]]

290.394

311.084

435.222

455.911

476.601

517.98 682.02 786.946

[[6]]

827.586

952.463

973.153

993.842

1034.483
60edo 8:7:3 cross between Mavila and Semaphore 160 300 460 520 680 820 980 1040
62edo 8:7:4 Neogothic thirds cross between Mavila and Semaphore 154.839 290.323 445.161 522.581 677.419 812.903 967.742 1045.161
64edo 8:7:5 cross between Mavila and Semaphore 150 281.25 431.25 525 675 806.25 956.25 1050
66edo 8:7:6 Neogothic thirds cross between Mavila and Semaphore [[7]] 272.727 418.182 527.273 672.727 800 [[8]] 1054.5455

Links