← 56edo 57edo 58edo →
Prime factorization 3 × 19
Step size 21.0526 ¢ 
Fifth 33\57 (694.737 ¢) (→ 11\19)
Semitones (A1:m2) 3:6 (63.16 ¢ : 126.3 ¢)
Dual sharp fifth 34\57 (715.789 ¢)
Dual flat fifth 33\57 (694.737 ¢) (→ 11\19)
Dual major 2nd 10\57 (210.526 ¢)
Consistency limit 7
Distinct consistency limit 7

Template:EDO intro

Theory

It can be used to tune mothra temperament, and is an excellent tuning for the 2.5/3.7.11.13.17.19 just intonation subgroup. One way to describe 57 is that it has a 5-limit part consisting of three versions of 19, plus a no-threes no-fives part which is much more accurate. A good generator to exploit the 2.5/3.7.11.13.17.19 aspect of 57 is the approximate 11/8, which is 26\57. This gives the 19-limit 46&57 temperament Heinz.

5-limit commas: 81/80, 3125/3072

7-limit commas: 81/80, 3125/3072, 1029/1024

11-limit commas: 99/98, 385/384, 441/440, 625/616

Odd harmonics

Approximation of odd harmonics in 57edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -7.22 -7.37 -0.40 +6.62 -3.95 +1.58 +6.47 +0.31 -2.78 -7.62 +3.30
Relative (%) -34.3 -35.0 -1.9 +31.4 -18.8 +7.5 +30.7 +1.5 -13.2 -36.2 +15.7
Steps
(reduced)
90
(33)
132
(18)
160
(46)
181
(10)
197
(26)
211
(40)
223
(52)
233
(5)
242
(14)
250
(22)
258
(30)

Intervals

Degree Cents Ups and downs notation (flat fifth 11\19) Ups and downs notation (sharp fifth 34\57)
0 0.0000 D D
1 21.0526 ^D, ^E♭♭♭ ^D, E♭
2 42.1053 vD♯, vE♭♭ ^^D, ^E♭
3 63.1579 D♯, E♭♭ ^3D, ^^E♭
4 84.2105 ^D♯, ^E♭♭ ^4D, ^3E♭
5 105.2632 vD𝄪, vE♭ ^5D, ^4E♭
6 126.3158 D𝄪, E♭ v4D♯, v5E
7 147.3684 ^D𝄪, ^E♭ v3D♯, v4E
8 168.42105 vD♯𝄪, vE vvD♯, v3E
9 189.4737 E vD♯, vvE
10 210.5263 ^E, ^F♭♭ D♯, vE
11 231.57895 vE♯, vF♭ E
12 252.6316 E♯, F♭ F
13 273.6842 ^E♯, ^F♭ ^F, G♭
14 294.7368 vE𝄪, vF ^^F, ^G♭
15 315.7895 F ^3F, ^^G♭
16 336.8421 ^F, ^G♭♭♭ ^4F, ^3G♭
17 357.8947 vF♯, vG♭♭ ^5F, ^4G♭
18 378.9474 F♯, G♭♭ v4F♯, v5G
19 400 ^F♯, ^G♭♭ v3F♯, v4G
20 421.0526 vF𝄪, vG♭ vvF♯, v3G
21 442.1053 F𝄪, G♭ vF♯, vvG
22 463.1579 ^F𝄪, ^G♭ F♯, vG
23 484.2105 vF♯𝄪, vG G
24 505.2632 G ^G, A♭
25 526.3158 ^G, ^A♭♭♭ ^^G, ^A♭
26 547.3684 vG♯, vA♭♭ ^3G, ^^A♭
27 568.42105 G♯, A♭♭ ^4G, ^3A♭
28 589.4737 ^G♯, ^A♭♭ ^5G, ^4A♭
29 610.5263 vG𝄪, vA♭ v4G♯, v5A
30 631.57895 G𝄪, A♭ v3G♯, v4A
31 652.6316 ^G𝄪, ^A♭ vvG♯, v3A
32 673.6842 vG♯𝄪, vA vG♯, vvA
33 694.7368 A G♯, vA
34 715.7895 ^A, ^B♭♭♭ A
35 736.8421 vA♯, vB♭♭ ^A, B♭
36 757.8947 A♯, B♭♭ ^^A, ^B♭
37 778.9474 ^A♯, ^B♭♭ ^3A, ^^B♭
38 800 vA𝄪, vB♭ ^4A, ^3B♭
39 821.0526 A𝄪, B♭ ^5A, ^4B♭
40 842.1053 ^A𝄪, ^B♭ v4A♯, v5B
41 863.1579 vA♯𝄪, vB v3A♯, v4B
42 884.2105 B vvA♯, v3B
43 905.2632 ^B, ^C♭♭ vA♯, vvB
44 926.3158 vB♯, vC♭ A♯, vB
45 947.3684 B♯, C♭ B
46 968.42105 ^B♯, ^C♭ C
47 989.4737 vB𝄪, vC ^C, D♭
48 1010.5263 C ^^C, ^D♭
49 1031.57895 ^C, ^D♭♭♭ ^3C, ^^D♭
50 1052.6316 vC♯, vD♭♭ ^4C, ^3D♭
51 1073.6842 C♯, D♭♭ ^5C, ^4D♭
52 1094.7368 ^C♯, ^D♭♭ v4C♯, v5D
53 1115.7895 vC𝄪, vD♭ v3C♯, v4D
54 1136.8421 C𝄪, D♭ vvC♯, v3D
55 1157.8947 ^C𝄪, ^D♭ vC♯, vvD
56 1178.9474 vC♯𝄪, vD C♯, vD
57 1200 D D

Scales of 57EDO

2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 1 - 3MOS of type 18L 21s (augene)