241edo

From Xenharmonic Wiki
Revision as of 18:54, 3 July 2022 by Fredg999 category edits (talk | contribs) (Sort key)
Jump to navigation Jump to search
← 240edo 241edo 242edo →
Prime factorization 241 (prime)
Step size 4.97925 ¢ 
Fifth 141\241 (702.075 ¢)
Semitones (A1:m2) 23:18 (114.5 ¢ : 89.63 ¢)
Consistency limit 15
Distinct consistency limit 15

Template:EDO intro

Theory

241et tempers out 78732/78125 in the 5-limit, 19683/19600 and 3136/3125 in the 7-limit, 65536/65219, 540/539, 43923/43904, and 151263/151250 in the 11-limit, and 351/350, 676/675, 729/728, 1001/1000 and 2080/2079 in the 13-limit. It provides the optimal patent val for subpental.

241edo is the 53rd prime edo.

Prime harmonics

Approximation of prime harmonics in 241edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 +0.12 +2.07 +2.13 +1.38 +0.97 -0.39 +1.24 -0.89 +1.13 +0.19
Relative (%) +0.0 +2.4 +41.5 +42.7 +27.7 +19.4 -7.9 +24.9 -17.8 +22.7 +3.9
Steps
(reduced)
241
(0)
382
(141)
560
(78)
677
(195)
834
(111)
892
(169)
985
(21)
1024
(60)
1090
(126)
1171
(207)
1194
(230)

Regular temperament properties

Subgroup Comma list Mapping Optimal 8ve
stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [382 -241 [241 382]] -0.038 0.038 0.76
2.3.5 78732/78125, [56 -28 -5 [241 382 560]] -0.322 0.403 8.10
2.3.5.7 3136/3125, 19683/19600, 829940/823543 [241 382 560 677]] -0.431 0.397 7.97
2.3.5.7.11 540/539, 3136/3125, 8019/8000, 15488/15435 [241 382 560 677 834]] -0.425 0.355 7.14
2.3.5.7.11.13 351/350, 540/539, 676/675, 3136/3125, 10648/10647 [241 382 560 677 834 892]] -0.397 0.330 6.63

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per octave
Generator
(reduced)
Cents
(reduced)
Associated
ratio
Temperaments
1 20\241 99.59 200/189 Quintagar / quinsandric
1 50\241 248.96 [-26 18 -1 Monzismic
1 76\241 378.42 56/45 Subpental
1 89\241 443.15 162/125 Sensipent
1 100\241 497.93 4/3 Gary