441edo
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author xenwolf and made on 2011-06-29 15:45:06 UTC.
- The original revision id was 239377849.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
**441edo** is the [[equal division of the octave]] into 441 parts of 2.721 [[cent]]s each. It is a very strong [[7-limit]] system; strong enough to qualify as a [[The Riemann Zeta Function and Tuning#Zeta EDO lists|zeta peak edo]]. In the [[5-limit]] It [[tempering out|tempers out]] the hemithirds [[comma]], |38 -2 -15>, the ennealimma, |1 -27 18>, whoosh, |37 25 -33>, and egads, |-36 -52 51>. In the 7-limit it tempers out 2401/2400, 4375/4374, 420175/419904 and 250047/250000, so that it supports [[Ragismic microtemperaments#Ennealimmal|ennealimmal temperament]]. In the [[11-limit]] it tempers out 4000/3993, and in the 13-limit, 1575/1573, 2080/2079 and 4225/4224. It provides the [[optimal patent val]] for 11- and [[13-limit]] [[Ragismic microtemperaments#Ennealimmal|semiennealimmal temperament]]. 411 is factored into primes as follows: 441 = [[3edo|3]]<span style="vertical-align: super;">2</span> · [[7edo|7]]<span style="vertical-align: super;">2</span>, and has this further divisors: [[9edo|9]], [[21edo|21]], [[49edo|49]].
Original HTML content:
<html><head><title>441edo</title></head><body><strong>441edo</strong> is the <a class="wiki_link" href="/equal%20division%20of%20the%20octave">equal division of the octave</a> into 441 parts of 2.721 <a class="wiki_link" href="/cent">cent</a>s each. It is a very strong <a class="wiki_link" href="/7-limit">7-limit</a> system; strong enough to qualify as a <a class="wiki_link" href="/The%20Riemann%20Zeta%20Function%20and%20Tuning#Zeta EDO lists">zeta peak edo</a>. In the <a class="wiki_link" href="/5-limit">5-limit</a> It <a class="wiki_link" href="/tempering%20out">tempers out</a> the hemithirds <a class="wiki_link" href="/comma">comma</a>, |38 -2 -15>, the ennealimma, |1 -27 18>, whoosh, |37 25 -33>, and egads, |-36 -52 51>. In the 7-limit it tempers out 2401/2400, 4375/4374, 420175/419904 and 250047/250000, so that it supports <a class="wiki_link" href="/Ragismic%20microtemperaments#Ennealimmal">ennealimmal temperament</a>. In the <a class="wiki_link" href="/11-limit">11-limit</a> it tempers out 4000/3993, and in the 13-limit, 1575/1573, 2080/2079 and 4225/4224. It provides the <a class="wiki_link" href="/optimal%20patent%20val">optimal patent val</a> for 11- and <a class="wiki_link" href="/13-limit">13-limit</a> <a class="wiki_link" href="/Ragismic%20microtemperaments#Ennealimmal">semiennealimmal temperament</a>.<br /> <br /> 411 is factored into primes as follows: 441 = <a class="wiki_link" href="/3edo">3</a><span style="vertical-align: super;">2</span> · <a class="wiki_link" href="/7edo">7</a><span style="vertical-align: super;">2</span>, and has this further divisors: <a class="wiki_link" href="/9edo">9</a>, <a class="wiki_link" href="/21edo">21</a>, <a class="wiki_link" href="/49edo">49</a>.</body></html>