73edt

From Xenharmonic Wiki
Revision as of 00:29, 1 February 2019 by Xenllium (talk | contribs) (Created page with "'''Division of the third harmonic into 73 equal parts''' (73edt) is related to 46 edo, but with the 3/1 rather than the 2/1 being just. The octave is about 1...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Division of the third harmonic into 73 equal parts (73edt) is related to 46 edo, but with the 3/1 rather than the 2/1 being just. The octave is about 1.5078 cents compressed and the step size is about 26.0542 cents. It is consistent to the 18-integer-limit. In comparison, 46edo is only consistent up to the 14-integer-limit.

degree cents value corresponding
JI intervals
comments
0 0.0000 exact 1/1
1 26.0542 66/65
2 52.1084 34/33
3 78.1625 68/65
4 104.2167 17/16
5 130.2709
6 156.3251
7 182.3792 10/9
8 208.4334
9 234.4876
10 260.5418
11 286.5960
12 312.6501 pseudo-6/5
13 338.7043
14 364.7585
15 390.8127 pseudo-5/4
16 416.8668
17 442.9210
18 468.9752
19 495.0294
20 521.0836
21 547.1377
22 573.1919
23 599.2461
24 625.3003
25 651.3545
26 677.4086
27 703.4628 pseudo-3/2
28 729.5170
29 755.5712
30 781.6253
31 807.6795
32 833.7337
33 859.7879
34 885.8421 pseudo-5/3
35 911.8962
36 937.9504
37 964.0046
38 990.0588
39 1016.1129 pseudo-9/5
40 1042.1671
41 1068.2213
42 1094.2755
43 1120.3297
44 1146.3838
45 1172.4380
46 1198.4922 pseudo-octave
47 1224.5464
48 1250.6005
49 1276.6547
50 1302.7089
51 1328.7631
52 1354.8173
53 1380.8714
54 1406.9256
55 1432.9798
56 1459.0340
57 1485.0882
58 1511.1423 pseudo-12/5
59 1537.1965
60 1563.2507
61 1589.3049 pseudo-5/2
62 1615.3590
63 1641.4132
64 1667.4674
65 1693.5216
66 1719.5758 27/10
67 1745.6299
68 1771.6841
69 1797.7383
70 1823.7925
71 1849.8466
72 1875.9008
73 1901.9550 exact 3/1 just perfect fifth plus an octave