1381edo

From Xenharmonic Wiki
Revision as of 20:50, 13 February 2025 by Francium (talk | contribs) (Created page with "{{Infobox ET}} {{EDO intro|1381}} == Theory == 1381edo is consistent to the 9-odd-limit, tempering out 2401/2400, 29360128/29296875 and {{monzo|33 -37 5 5}} i...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
← 1380edo 1381edo 1382edo →
Prime factorization 1381 (prime)
Step size 0.868936 ¢ 
Fifth 808\1381 (702.1 ¢)
Semitones (A1:m2) 132:103 (114.7 ¢ : 89.5 ¢)
Consistency limit 9
Distinct consistency limit 9

Template:EDO intro

Theory

1381edo is consistent to the 9-odd-limit, tempering out 2401/2400, 29360128/29296875 and [33 -37 5 5 in the 7-limit. It is strong in the 2.3.7.23.29 subgroup, tempering out 60817408/60761421, 5888/5887, 121025149/120932352 and 661153497088/660379746861. Using the 2.3.7.23.37 subgroup, it tempers out 1702/1701. The equal temperament supports quasiorwell.

Odd harmonics

Approximation of odd harmonics in 1381edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) +0.145 +0.363 +0.037 +0.290 -0.413 -0.267 -0.361 +0.186 -0.337 +0.182 -0.034
Relative (%) +16.7 +41.7 +4.3 +33.4 -47.5 -30.7 -41.6 +21.4 -38.8 +21.0 -3.9
Steps
(reduced)
2189
(808)
3207
(445)
3877
(1115)
4378
(235)
4777
(634)
5110
(967)
5395
(1252)
5645
(121)
5866
(342)
6066
(542)
6247
(723)

Subsets and supersets

1381edo is the 221st prime edo. 2762edo, which doubles it, gives a good correction to the harmonic 11.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [2189 -1381 [1381 2189]] −0.0457 0.0457 5.26
2.3.5 [-16 35 -17, [93 -3 -38 [1381 2189 3207]] −0.0825 0.0641 7.38
2.3.5.7 2401/2400, 29360128/29296875, [33 -37 5 5 [1381 2189 3207 3877]] −0.0652 0.0631 7.26

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
Ratio*
Temperaments
1 210\1381 182.476 10/9 Minortone
1 312\1381 271.108 1024/875 Quasiorwell

* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct