Lumatone mapping for 34edo

From Xenharmonic Wiki
Revision as of 01:34, 17 November 2024 by ArrowHead294 (talk | contribs) (Template adds categories automatically)
Jump to navigation Jump to search

34edo is an interesting case for Lumatone mappings, since (like 24edo), it is not generated by fifths and octaves, so the Standard Lumatone mapping for Pythagorean only reaches 17edo intervals unless you use the b val instead, which generates mabila.

14
18
21
25
29
33
3
24
28
32
2
6
10
14
18
31
1
5
9
13
17
21
25
29
33
3
0
4
8
12
16
20
24
28
32
2
6
10
14
18
7
11
15
19
23
27
31
1
5
9
13
17
21
25
29
33
3
10
14
18
22
26
30
0
4
8
12
16
20
24
28
32
2
6
10
14
18
17
21
25
29
33
3
7
11
15
19
23
27
31
1
5
9
13
17
21
25
29
33
3
20
24
28
32
2
6
10
14
18
22
26
30
0
4
8
12
16
20
24
28
32
2
6
10
14
18
31
1
5
9
13
17
21
25
29
33
3
7
11
15
19
23
27
31
1
5
9
13
17
21
25
29
33
3
12
16
20
24
28
32
2
6
10
14
18
22
26
30
0
4
8
12
16
20
24
28
32
2
6
10
31
1
5
9
13
17
21
25
29
33
3
7
11
15
19
23
27
31
1
5
9
13
17
12
16
20
24
28
32
2
6
10
14
18
22
26
30
0
4
8
12
16
20
31
1
5
9
13
17
21
25
29
33
3
7
11
15
19
23
27
12
16
20
24
28
32
2
6
10
14
18
22
26
30
31
1
5
9
13
17
21
25
29
33
3
12
16
20
24
28
32
2
6
31
1
5
9
13
12
16


However, this puts the perfect 5th in awkward places. The Tetracot mapping is probably a better option if you want a heptatonic scale that makes finding intervals relatively easy, since the perfect 5th is in a straight line from the root, while single steps are neatly mapped to the vertical axis.

25
30
29
0
5
10
15
28
33
4
9
14
19
24
29
32
3
8
13
18
23
28
33
4
9
14
31
2
7
12
17
22
27
32
3
8
13
18
23
28
1
6
11
16
21
26
31
2
7
12
17
22
27
32
3
8
13
0
5
10
15
20
25
30
1
6
11
16
21
26
31
2
7
12
17
22
27
4
9
14
19
24
29
0
5
10
15
20
25
30
1
6
11
16
21
26
31
2
7
12
3
8
13
18
23
28
33
4
9
14
19
24
29
0
5
10
15
20
25
30
1
6
11
16
21
26
12
17
22
27
32
3
8
13
18
23
28
33
4
9
14
19
24
29
0
5
10
15
20
25
30
1
6
11
26
31
2
7
12
17
22
27
32
3
8
13
18
23
28
33
4
9
14
19
24
29
0
5
10
15
11
16
21
26
31
2
7
12
17
22
27
32
3
8
13
18
23
28
33
4
9
14
19
25
30
1
6
11
16
21
26
31
2
7
12
17
22
27
32
3
8
13
18
10
15
20
25
30
1
6
11
16
21
26
31
2
7
12
17
22
24
29
0
5
10
15
20
25
30
1
6
11
16
21
9
14
19
24
29
0
5
10
15
20
25
23
28
33
4
9
14
19
24
8
13
18
23
28
22
27


If you want greater range you can slice the perfect 4th in two and use the immunity mapping:

19
26
25
32
5
12
19
24
31
4
11
18
25
32
5
30
3
10
17
24
31
4
11
18
25
32
29
2
9
16
23
30
3
10
17
24
31
4
11
18
1
8
15
22
29
2
9
16
23
30
3
10
17
24
31
4
11
0
7
14
21
28
1
8
15
22
29
2
9
16
23
30
3
10
17
24
31
6
13
20
27
0
7
14
21
28
1
8
15
22
29
2
9
16
23
30
3
10
17
24
5
12
19
26
33
6
13
20
27
0
7
14
21
28
1
8
15
22
29
2
9
16
23
30
3
10
18
25
32
5
12
19
26
33
6
13
20
27
0
7
14
21
28
1
8
15
22
29
2
9
16
23
30
3
4
11
18
25
32
5
12
19
26
33
6
13
20
27
0
7
14
21
28
1
8
15
22
29
2
9
31
4
11
18
25
32
5
12
19
26
33
6
13
20
27
0
7
14
21
28
1
8
15
17
24
31
4
11
18
25
32
5
12
19
26
33
6
13
20
27
0
7
14
10
17
24
31
4
11
18
25
32
5
12
19
26
33
6
13
20
30
3
10
17
24
31
4
11
18
25
32
5
12
19
23
30
3
10
17
24
31
4
11
18
25
9
16
23
30
3
10
17
24
2
9
16
23
30
22
29


Or the kleismic mapping, although the 3L 1s mapping does not quite cover the whole gamut.

19
28
26
1
10
19
28
24
33
8
17
26
1
10
19
31
6
15
24
33
8
17
26
1
10
19
29
4
13
22
31
6
15
24
33
8
17
26
1
10
2
11
20
29
4
13
22
31
6
15
24
33
8
17
26
1
10
0
9
18
27
2
11
20
29
4
13
22
31
6
15
24
33
8
17
26
1
7
16
25
0
9
18
27
2
11
20
29
4
13
22
31
6
15
24
33
8
17
26
1
5
14
23
32
7
16
25
0
9
18
27
2
11
20
29
4
13
22
31
6
15
24
33
8
17
26
21
30
5
14
23
32
7
16
25
0
9
18
27
2
11
20
29
4
13
22
31
6
15
24
33
8
17
26
12
21
30
5
14
23
32
7
16
25
0
9
18
27
2
11
20
29
4
13
22
31
6
15
24
33
12
21
30
5
14
23
32
7
16
25
0
9
18
27
2
11
20
29
4
13
22
31
6
3
12
21
30
5
14
23
32
7
16
25
0
9
18
27
2
11
20
29
4
3
12
21
30
5
14
23
32
7
16
25
0
9
18
27
2
11
28
3
12
21
30
5
14
23
32
7
16
25
0
9
28
3
12
21
30
5
14
23
32
7
16
19
28
3
12
21
30
5
14
19
28
3
12
21
10
19

Template:Lumatone mapping navigation