167edt

From Xenharmonic Wiki
Revision as of 09:11, 5 October 2024 by BudjarnLambeth (talk | contribs) (Intro inter harm)
Jump to navigation Jump to search
This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 166edt 167edt 168edt →
Prime factorization 167 (prime)
Step size 11.389 ¢ 
Octave 105\167edt (1195.84 ¢)
Consistency limit 3
Distinct consistency limit 3

167 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 167edt or 167ed3), is a nonoctave tuning system that divides the interval of 3/1 into 167 equal parts of about 11.4 ¢ each. Each step represents a frequency ratio of 31/167, or the 167th root of 3.

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 11.39 7.78
2 22.78 15.57
3 34.17 23.35 50/49, 51/50
4 45.56 31.14 38/37, 39/38
5 56.94 38.92 31/30
6 68.33 46.71 51/49
7 79.72 54.49 22/21, 45/43
8 91.11 62.28 39/37
9 102.5 70.06 35/33
10 113.89 77.84 47/44
11 125.28 85.63
12 136.67 93.41
13 148.06 101.2 49/45
14 159.45 108.98 34/31
15 170.83 116.77
16 182.22 124.55 10/9
17 193.61 132.34 19/17, 47/42
18 205 140.12
19 216.39 147.9 17/15
20 227.78 155.69 57/50
21 239.17 163.47 31/27, 54/47
22 250.56 171.26
23 261.95 179.04 50/43, 57/49
24 273.33 186.83
25 284.72 194.61 46/39
26 296.11 202.4 51/43
27 307.5 210.18 37/31
28 318.89 217.96
29 330.28 225.75 23/19
30 341.67 233.53
31 353.06 241.32 38/31
32 364.45 249.1 58/47
33 375.84 256.89 46/37
34 387.22 264.67
35 398.61 272.46 34/27, 39/31
36 410 280.24 19/15
37 421.39 288.02 37/29
38 432.78 295.81
39 444.17 303.59
40 455.56 311.38 13/10
41 466.95 319.16 38/29
42 478.34 326.95 29/22
43 489.72 334.73
44 501.11 342.51
45 512.5 350.3 39/29
46 523.89 358.08 23/17
47 535.28 365.87
48 546.67 373.65 37/27
49 558.06 381.44 29/21
50 569.45 389.22
51 580.84 397.01
52 592.23 404.79 38/27
53 603.61 412.57
54 615 420.36
55 626.39 428.14
56 637.78 435.93 13/9
57 649.17 443.71
58 660.56 451.5 41/28, 60/41
59 671.95 459.28
60 683.34 467.07 46/31, 49/33
61 694.73 474.85
62 706.12 482.63
63 717.5 490.42
64 728.89 498.2
65 740.28 505.99 23/15
66 751.67 513.77
67 763.06 521.56
68 774.45 529.34
69 785.84 537.13
70 797.23 544.91
71 808.62 552.69
72 820 560.48
73 831.39 568.26 21/13
74 842.78 576.05
75 854.17 583.83
76 865.56 591.62
77 876.95 599.4
78 888.34 607.19
79 899.73 614.97 37/22
80 911.12 622.75 22/13
81 922.51 630.54 46/27
82 933.89 638.32
83 945.28 646.11 19/11
84 956.67 653.89 33/19
85 968.06 661.68
86 979.45 669.46 37/21
87 990.84 677.25 39/22
88 1002.23 685.03
89 1013.62 692.81
90 1025.01 700.6 47/26
91 1036.39 708.38
92 1047.78 716.17
93 1059.17 723.95
94 1070.56 731.74 13/7
95 1081.95 739.52 43/23
96 1093.34 747.31
97 1104.73 755.09
98 1116.12 762.87
99 1127.51 770.66
100 1138.9 778.44
101 1150.28 786.23
102 1161.67 794.01 45/23
103 1173.06 801.8
104 1184.45 809.58
105 1195.84 817.37
106 1207.23 825.15
107 1218.62 832.93
108 1230.01 840.72
109 1241.4 848.5 41/20, 43/21
110 1252.78 856.29
111 1264.17 864.07 27/13
112 1275.56 871.86
113 1286.95 879.64
114 1298.34 887.43
115 1309.73 895.21 49/23
116 1321.12 902.99
117 1332.51 910.78
118 1343.9 918.56 50/23
119 1355.29 926.35
120 1366.67 934.13
121 1378.06 941.92 51/23
122 1389.45 949.7 29/13
123 1400.84 957.49
124 1412.23 965.27
125 1423.62 973.05
126 1435.01 980.84
127 1446.4 988.62 30/13
128 1457.79 996.41
129 1469.17 1004.19
130 1480.56 1011.98
131 1491.95 1019.76 45/19
132 1503.34 1027.54 31/13
133 1514.73 1035.33
134 1526.12 1043.11
135 1537.51 1050.9
136 1548.9 1058.68
137 1560.29 1066.47
138 1571.68 1074.25 57/23
139 1583.06 1082.04
140 1594.45 1089.82
141 1605.84 1097.6 43/17
142 1617.23 1105.39
143 1628.62 1113.17
144 1640.01 1120.96 49/19
145 1651.4 1128.74
146 1662.79 1136.53 47/18
147 1674.18 1144.31 50/19
148 1685.56 1152.1 45/17
149 1696.95 1159.88
150 1708.34 1167.66 51/19
151 1719.73 1175.45 27/10
152 1731.12 1183.23
153 1742.51 1191.02
154 1753.9 1198.8
155 1765.29 1206.59
156 1776.68 1214.37
157 1788.07 1222.16
158 1799.45 1229.94
159 1810.84 1237.72 37/13
160 1822.23 1245.51 43/15
161 1833.62 1253.29 49/17
162 1845.01 1261.08
163 1856.4 1268.86 38/13
164 1867.79 1276.65 50/17
165 1879.18 1284.43
166 1890.57 1292.22
167 1901.96 1300 3/1

Harmonics

Approximation of harmonics in 167edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -4.16 +0.00 +3.07 +3.98 -4.16 +2.30 -1.09 +0.00 -0.18 +5.65 +3.07
Relative (%) -36.5 +0.0 +26.9 +34.9 -36.5 +20.2 -9.6 +0.0 -1.6 +49.6 +26.9
Steps
(reduced)
105
(105)
167
(0)
211
(44)
245
(78)
272
(105)
296
(129)
316
(149)
334
(0)
350
(16)
365
(31)
378
(44)
Approximation of harmonics in 167edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +1.16 -1.86 +3.98 -5.25 +3.68 -4.16 +4.74 -4.34 +2.30 +1.49 +4.26
Relative (%) +10.2 -16.3 +34.9 -46.1 +32.3 -36.5 +41.6 -38.1 +20.2 +13.1 +37.4
Steps
(reduced)
390
(56)
401
(67)
412
(78)
421
(87)
431
(97)
439
(105)
448
(114)
455
(121)
463
(129)
470
(136)
477
(143)