User:Ganaram inukshuk/Sandbox

From Xenharmonic Wiki
Jump to navigation Jump to search

This is a sandbox page for me (Ganaram) to test out a few things before deploying things. (Expect some mess.)

Math symbols test

Isolated symbols

[math]\displaystyle{ T := [ t_1, t_2, ..., t_m ] }[/math] [math]\displaystyle{ S := [ s_1, s_2, ..., s_m ] }[/math] [math]\displaystyle{ P := [ p_1, p_2, ..., p_n ] }[/math]

Sample text

Pulled from muddle page.

Let the target scale T be a sequence of steps [ t1, t2, t3, ... , tm ], the parent scale P be a sequence of steps [ p1, p2, p3, ... , pn ], and the resulting muddle scale S be a sequence of steps [ s1, s2, s3, ... , sm ]. Note that the number of steps in P must be equal to the sum of all ti from T. Also note that both ti and pi are both numeric values, as with si.

The first step s1 of the muddle scale is the sum of the first t1 steps from P, the next step s2 is the sum of the next t2 steps after that (after the previous t1 steps), the next step s3 is the sum of the next t3 steps after that (after the previous t1+t2 steps), and so on, where the last step sm is the sum of the last tm steps from P. For example, if s1 is made from the first 3 steps of P (p1, p2, and p3), then the next step p2 is the sum of the next t2 steps after p3, meaning the sum starts at (and includes) p4.

Interval and degree tables

The following two tables were made using a custom program (dubbed Moscalc and Modecalc) whose output is formatted for use with MediaWiki.

Intervals of 2L 5s for each mode
Mode UDP Rotational order mosunison 1-mosstep 2-mosstep 3-mosstep 4-mosstep 5-mosstep 6-mosstep mosoctave
LssLsss 6|0 0 0 L L+s L+2s 2L+2s 2L+3s 2L+4s 2L+5s
LsssLss 5|1 3 0 L L+s L+2s L+3s 2L+3s 2L+4s 2L+5s
sLssLss 4|2 6 0 s L+s L+2s L+3s 2L+3s 2L+4s 2L+5s
sLsssLs 3|3 2 0 s L+s L+2s L+3s L+4s 2L+4s 2L+5s
ssLssLs 2|4 5 0 s 2s L+2s L+3s L+4s 2L+4s 2L+5s
ssLsssL 1|5 1 0 s 2s L+2s L+3s L+4s L+5s 2L+5s
sssLssL 0|6 4 0 s 2s 3s L+3s L+4s L+5s 2L+5s


Degrees of 2L 5s for each mode
Mode UDP Rotational order 0-mosdegree 1-mosdegree 2-mosdegree 3-mosdegree 4-mosdegree 5-mosdegree 6-mosdegree 7-mosdegree
LssLsss 6|0 0 perfect major major perfect augmented major major perfect
LsssLss 5|1 3 perfect major major perfect perfect major major perfect
sLssLss 4|2 6 perfect minor major perfect perfect major major perfect
sLsssLs 3|3 2 perfect minor major perfect perfect minor major perfect
ssLssLs 2|4 5 perfect minor minor perfect perfect minor major perfect
ssLsssL 1|5 1 perfect minor minor perfect perfect minor minor perfect
sssLssL 0|6 4 perfect minor minor diminished perfect minor minor perfect

Note: don't merge cells on a table with sorting.

Intervals of 2L 5s for each mode (with mode names)
Mode Mode name UDP Rotational order mosunison 1-mosstep 2-mosstep 3-mosstep 4-mosstep 5-mosstep 6-mosstep mosoctave
LssLsss antilocrian 6|0 0 0 L L+s L+2s 2L+2s 2L+3s 2L+4s 2L+5s
LsssLss antiphrygian 5|1 3 0 L L+s L+2s L+3s 2L+3s 2L+4s 2L+5s
sLssLss anti-aeolian 4|2 6 0 s L+s L+2s L+3s 2L+3s 2L+4s 2L+5s
sLsssLs antidorian 3|3 2 0 s L+s L+2s L+3s L+4s 2L+4s 2L+5s
ssLssLs antimixolydian 2|4 5 0 s 2s L+2s L+3s L+4s 2L+4s 2L+5s
ssLsssL anti-ionian 1|5 1 0 s 2s L+2s L+3s L+4s L+5s 2L+5s
sssLssL antilydian 0|6 4 0 s 2s 3s L+3s L+4s L+5s 2L+5s
Degrees of 2L 5s for each mode (with mode names)
Mode Mode name UDP Rotational order 0-mosdegree 1-mosdegree 2-mosdegree 3-mosdegree 4-mosdegree 5-mosdegree 6-mosdegree 7-mosdegree
LssLsss antilocrian 6|0 0 perfect major major perfect augmented major major perfect
LsssLss antiphrygian 5|1 3 perfect major major perfect perfect major major perfect
sLssLss anti-aeolian 4|2 6 perfect minor major perfect perfect major major perfect
sLsssLs antidorian 3|3 2 perfect minor major perfect perfect minor major perfect
ssLssLs antimixolydian 2|4 5 perfect minor minor perfect perfect minor major perfect
ssLsssL anti-ionian 1|5 1 perfect minor minor perfect perfect minor minor perfect
sssLssL antilydian 0|6 4 perfect minor minor diminished perfect minor minor perfect

Alternate mos tables

Pattern Note count Number of periods Mos name
1L 1s 2 1 trivial; monowood
1L 2s 3 1 antrial
1L 3s 4 1 trial
1L 4s 5 1 antetric
1L 5s 6 1 biwood
1L 6s 7 1 tetric
1L 7s 8 1 pedal
1L 8s 9 1 pentic
1L 9s 10 1 antipentic
2L 1s 3 1 manual
2L 2s 4 2 antimachinoid
2L 3s 5 1 anticitric
2L 4s 6 2 triwood
2L 5s 7 1 citric
2L 6s 8 2 machinoid
2L 7s 9 1 onyx
2L 8s 10 2 antidiatonic
3L 1s 4 1 mosh
3L 2s 5 1 smitonic
3L 3s 6 3 diatonic
3L 4s 7 1 arch(a)eotonic
3L 5s 8 1 antipine
3L 6s 9 3 antiekic
3L 7s 10 1 checkertonic
4L 1s 5 1 tetrawood; diminished
4L 2s 6 2 oneirotonic
4L 3s 7 1 ekic
4L 4s 8 2 pine
4L 5s 9 1 antisubneutralic
4L 6s 10 2 balzano
5L 1s 6 1 tcherepnin
5L 2s 7 1 gramitonic
5L 3s 8 1 semiquartal
5L 4s 9 1 hyrulic
5L 5s 10 5 superdiatonic
6L 1s 7 1 subneutralic
6L 2s 8 2 antisinatonic
6L 3s 9 3 jaric
6L 4s 10 2 sephiroid
7L 1s 8 1 lime
7L 2s 9 1 pentawood
7L 3s 10 1 lemon
8L 1s 9 1 dicoid /'daɪkɔɪd/
8L 2s 10 4 taric
9L 1s 10 1 sinatonic