266edo

From Xenharmonic Wiki
Revision as of 23:55, 20 September 2024 by BudjarnLambeth (talk | contribs) (+ It is part of the optimal ET sequence for the decimaleap, dodecacot, gentle, kujuku, parapyth, parapythic, pentacircle, quintannic, sruti and starlingtet temperaments.)
Jump to navigation Jump to search
← 265edo 266edo 267edo →
Prime factorization 2 × 7 × 19
Step size 4.51128 ¢ 
Fifth 156\266 (703.759 ¢) (→ 78\133)
Semitones (A1:m2) 28:18 (126.3 ¢ : 81.2 ¢)
Dual sharp fifth 156\266 (703.759 ¢) (→ 78\133)
Dual flat fifth 155\266 (699.248 ¢)
Dual major 2nd 45\266 (203.008 ¢)
Consistency limit 7
Distinct consistency limit 7

Template:EDO intro

It is part of the optimal ET sequence for the decimaleap, dodecacot, gentle, kujuku, parapyth, parapythic, pentacircle, quintannic, sruti and starlingtet temperaments.

Odd harmonics

Approximation of odd harmonics in 266edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) +1.80 +1.66 +1.10 -0.90 -0.94 -1.43 -1.05 -1.20 +0.23 -1.61 -1.21
Relative (%) +40.0 +36.7 +24.4 -20.0 -20.9 -31.7 -23.3 -26.5 +5.1 -35.6 -26.7
Steps
(reduced)
422
(156)
618
(86)
747
(215)
843
(45)
920
(122)
984
(186)
1039
(241)
1087
(23)
1130
(66)
1168
(104)
1203
(139)


This page is a stub. You can help the Xenharmonic Wiki by expanding it.