61edt
← 60edt | 61edt | 62edt → |
61 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 61edt or 61ed3), is a nonoctave tuning system that divides the interval of 3/1 into 61 equal parts of about 31.2 ¢ each. Each step represents a frequency ratio of 31/61, or the 61st root of 3.
61edt provides a good tuning of mintaka temperament in the 3.7.11 subgroup, and contains an intersection of it with Bohlen-Pierce-Stearns, despite the 5th harmonic being rather far from accurate. Notably, the octave is almost halfway in between steps, and therefore this system minimizes the prospect of a shimmering octave appearing, although it has a good 4th harmonic.
Intervals
Steps | Cents | Hekts | Approximate ratios |
---|---|---|---|
0 | 0 | 0 | 1/1 |
1 | 31.2 | 21.3 | |
2 | 62.4 | 42.6 | |
3 | 93.5 | 63.9 | 19/18 |
4 | 124.7 | 85.2 | 14/13, 29/27 |
5 | 155.9 | 106.6 | 23/21 |
6 | 187.1 | 127.9 | |
7 | 218.3 | 149.2 | 17/15, 25/22 |
8 | 249.4 | 170.5 | 15/13, 22/19 |
9 | 280.6 | 191.8 | 27/23 |
10 | 311.8 | 213.1 | 6/5 |
11 | 343 | 234.4 | |
12 | 374.2 | 255.7 | |
13 | 405.3 | 277 | 19/15, 29/23 |
14 | 436.5 | 298.4 | 9/7 |
15 | 467.7 | 319.7 | 17/13 |
16 | 498.9 | 341 | |
17 | 530.1 | 362.3 | 19/14, 34/25 |
18 | 561.2 | 383.6 | 18/13, 29/21 |
19 | 592.4 | 404.9 | |
20 | 623.6 | 426.2 | 33/23 |
21 | 654.8 | 447.5 | 19/13 |
22 | 686 | 468.9 | |
23 | 717.1 | 490.2 | |
24 | 748.3 | 511.5 | |
25 | 779.5 | 532.8 | 11/7 |
26 | 810.7 | 554.1 | |
27 | 841.8 | 575.4 | |
28 | 873 | 596.7 | |
29 | 904.2 | 618 | |
30 | 935.4 | 639.3 | |
31 | 966.6 | 660.7 | |
32 | 997.7 | 682 | |
33 | 1028.9 | 703.3 | |
34 | 1060.1 | 724.6 | 35/19 |
35 | 1091.3 | 745.9 | |
36 | 1122.5 | 767.2 | 21/11 |
37 | 1153.6 | 788.5 | 35/18 |
38 | 1184.8 | 809.8 | |
39 | 1216 | 831.1 | |
40 | 1247.2 | 852.5 | 35/17 |
41 | 1278.4 | 873.8 | 23/11 |
42 | 1309.5 | 895.1 | |
43 | 1340.7 | 916.4 | 13/6 |
44 | 1371.9 | 937.7 | |
45 | 1403.1 | 959 | |
46 | 1434.3 | 980.3 | |
47 | 1465.4 | 1001.6 | 7/3 |
48 | 1496.6 | 1023 | |
49 | 1527.8 | 1044.3 | |
50 | 1559 | 1065.6 | |
51 | 1590.2 | 1086.9 | 5/2 |
52 | 1621.3 | 1108.2 | 23/9 |
53 | 1652.5 | 1129.5 | 13/5 |
54 | 1683.7 | 1150.8 | |
55 | 1714.9 | 1172.1 | 35/13 |
56 | 1746.1 | 1193.4 | |
57 | 1777.2 | 1214.8 | |
58 | 1808.4 | 1236.1 | |
59 | 1839.6 | 1257.4 | |
60 | 1870.8 | 1278.7 | |
61 | 1902 | 1300 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -15.2 | +0.0 | -11.3 | -1.4 | -4.4 | -13.0 | -9.8 | -15.2 | -3.0 |
Relative (%) | -48.7 | +0.0 | -36.3 | -4.6 | -14.2 | -41.8 | -31.3 | -48.9 | -9.7 | |
Steps (reduced) |
38 (38) |
61 (0) |
89 (28) |
108 (47) |
133 (11) |
142 (20) |
157 (35) |
163 (41) |
174 (52) |
Harmonic | 25 | 27 | 29 | 31 | 33 | 35 | 37 | 39 | 41 | 43 | 45 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +8.5 | +0.0 | +1.0 | +10.3 | -4.4 | -12.8 | -15.4 | -13.0 | -6.1 | +5.0 | -11.3 |
Relative (%) | +27.3 | +0.0 | +3.2 | +32.9 | -14.2 | -40.9 | -49.5 | -41.8 | -19.5 | +16.1 | -36.3 | |
Steps (reduced) |
179 (57) |
183 (0) |
187 (4) |
191 (8) |
194 (11) |
197 (14) |
200 (17) |
203 (20) |
206 (23) |
209 (26) |
211 (28) |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |