← 869edo 870edo 871edo →
Prime factorization 2 × 3 × 5 × 29
Step size 1.37931 ¢ 
Fifth 509\870 (702.069 ¢)
Semitones (A1:m2) 83:65 (114.5 ¢ : 89.66 ¢)
Consistency limit 7
Distinct consistency limit 7

Template:EDO intro

870edo is notably strong in the subgroup of Fermat primes, 2.3.5.17.

Odd harmonics

Approximation of prime harmonics in 1243edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.000 -0.105 -0.151 +0.442 -0.071 +0.341 +0.274 -0.168 +0.205 -0.454 -0.064
Relative (%) +0.0 -10.8 -15.7 +45.8 -7.4 +35.3 +28.4 -17.4 +21.2 -47.0 -6.6
Steps
(reduced)
1243
(0)
1970
(727)
2886
(400)
3490
(1004)
4300
(571)
4600
(871)
5081
(109)
5280
(308)
5623
(651)
6038
(1066)
6158
(1186)

Subsets and supersets

Since 870 factors into 2 × 3 × 5 × 29, 870edo has subset edos 2, 3, 5, 6, 10, 15, 29, 30, 58, 87, 145, 174, 290, and 435.

  This page is a stub. You can help the Xenharmonic Wiki by expanding it.