379edo

Revision as of 18:04, 13 February 2024 by Francium (talk | contribs) (+categories)
← 378edo 379edo 380edo →
Prime factorization 379 (prime)
Step size 3.16623 ¢ 
Fifth 222\379 (702.902 ¢)
Semitones (A1:m2) 38:27 (120.3 ¢ : 85.49 ¢)
Consistency limit 7
Distinct consistency limit 7

Template:EDO intro

Theory

Using the patent val, the equal temperament tempers out 2401/2400, 5120/5103, and 10976/10935 in the 7-limit; 5632/5625, 6250/6237, 14641/14580, 42875/42768, and 43923/43904 in the 11-limit. It supports hemififths and subneutral.

Odd harmonics

Approximation of odd harmonics in 379edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) +0.95 -0.03 +0.04 -1.27 -0.39 -1.48 +0.91 -0.47 +0.11 +0.99 -1.36
Relative (%) +29.9 -1.1 +1.2 -40.2 -12.5 -46.7 +28.8 -14.8 +3.5 +31.2 -43.0
Steps
(reduced)
601
(222)
880
(122)
1064
(306)
1201
(64)
1311
(174)
1402
(265)
1481
(344)
1549
(33)
1610
(94)
1665
(149)
1714
(198)

Subsets and supersets

379edo is the 75th prime edo.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [601 -379 [379 601]] -0.2989 0.2988 9.43
2.3.5 [35 -25 2, [38 -2 -15 [379​ 601 ​880]] -0.1944 0.2852 9.01
2.3.5.7 5120/5103, 2401/2400, [-23 -11 15 2 [379​ 601​ 880​ 1064​]] -0.1493 0.2591 8.18
2.3.5.7.11 2401/2400, 5120/5103, 5632/5625, 14641/14580 [379 ​601 ​880​ 1064 ​1311 ​]] -0.0967 0.2545 8.04
2.3.5.7.11.13 325/324, 1001/1000, 1716/1715, 5120/5103, 6656/6655 [379 ​601 ​880​ 1064 ​1311​ 1402]] (379) -0.014 0.2969 9.38

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
Ratio*
Temperaments
1 61\379 193.14 262144/234375 Luna
1 110\379 348.28 57344/46875 Subneutral
1 111\379 351.45 49/40 Hemififths
1 143\379 452.77 162/125 Maja (5-limit)
1 221\379 699.74 8192/6137 Langwidge

Scales

Music

Francium