There are many conceivable ways to map 36edo onto the Lumatone keyboard. Unfortunately, as it has multiple rings of 5ths, the Standard Lumatone mapping for Pythagorean is not one of them. Since it is highly composite, many other mappings will also fail to cover the entire gamut, including both the second and third best alternative 5ths. If you want an evenly distributed heptatonic scale that gives easy access to the perfect 5th, you instead need to use the squirrel mapping.
15
20
21
26
31
0
5
22
27
32
1
6
11
16
21
28
33
2
7
12
17
22
27
32
1
6
29
34
3
8
13
18
23
28
33
2
7
12
17
22
35
4
9
14
19
24
29
34
3
8
13
18
23
28
33
2
7
0
5
10
15
20
25
30
35
4
9
14
19
24
29
34
3
8
13
18
23
6
11
16
21
26
31
0
5
10
15
20
25
30
35
4
9
14
19
24
29
34
3
8
7
12
17
22
27
32
1
6
11
16
21
26
31
0
5
10
15
20
25
30
35
4
9
14
19
24
18
23
28
33
2
7
12
17
22
27
32
1
6
11
16
21
26
31
0
5
10
15
20
25
30
35
4
9
34
3
8
13
18
23
28
33
2
7
12
17
22
27
32
1
6
11
16
21
26
31
0
5
10
15
19
24
29
34
3
8
13
18
23
28
33
2
7
12
17
22
27
32
1
6
11
16
21
35
4
9
14
19
24
29
34
3
8
13
18
23
28
33
2
7
12
17
22
20
25
30
35
4
9
14
19
24
29
34
3
8
13
18
23
28
0
5
10
15
20
25
30
35
4
9
14
19
24
29
21
26
31
0
5
10
15
20
25
30
35
1
6
11
16
21
26
31
0
22
27
32
1
6
2
7
The Liese mapping also provides a heptatonic scale which reaches the 5th in three steps, but is very lopsided.
24
26
1
3
5
7
9
12
14
16
18
20
22
24
26
25
27
29
31
33
35
1
3
5
7
9
0
2
4
6
8
10
12
14
16
18
20
22
24
26
13
15
17
19
21
23
25
27
29
31
33
35
1
3
5
7
9
24
26
28
30
32
34
0
2
4
6
8
10
12
14
16
18
20
22
24
26
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
1
3
5
7
9
12
14
16
18
20
22
24
26
28
30
32
34
0
2
4
6
8
10
12
14
16
18
20
22
24
26
27
29
31
33
35
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
1
3
5
7
9
8
10
12
14
16
18
20
22
24
26
28
30
32
34
0
2
4
6
8
10
12
14
16
18
20
22
27
29
31
33
35
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
8
10
12
14
16
18
20
22
24
26
28
30
32
34
0
2
4
6
8
10
27
29
31
33
35
1
3
5
7
9
11
13
15
17
19
21
23
8
10
12
14
16
18
20
22
24
26
28
30
32
34
27
29
31
33
35
1
3
5
7
9
11
8
10
12
14
16
18
20
22
27
29
31
33
35
8
10
However, since 36edo works best as a 2.3.7 subgroup temperament, and the slendric mapping most efficiently takes advantage of that, while also spanning the widest range that allows access to the full gamut at the same time it is probably preferable.
9
16
17
24
31
2
9
18
25
32
3
10
17
24
31
26
33
4
11
18
25
32
3
10
17
24
27
34
5
12
19
26
33
4
11
18
25
32
3
10
35
6
13
20
27
34
5
12
19
26
33
4
11
18
25
32
3
0
7
14
21
28
35
6
13
20
27
34
5
12
19
26
33
4
11
18
25
8
15
22
29
0
7
14
21
28
35
6
13
20
27
34
5
12
19
26
33
4
11
18
9
16
23
30
1
8
15
22
29
0
7
14
21
28
35
6
13
20
27
34
5
12
19
26
33
4
24
31
2
9
16
23
30
1
8
15
22
29
0
7
14
21
28
35
6
13
20
27
34
5
12
19
26
33
10
17
24
31
2
9
16
23
30
1
8
15
22
29
0
7
14
21
28
35
6
13
20
27
34
5
3
10
17
24
31
2
9
16
23
30
1
8
15
22
29
0
7
14
21
28
35
6
13
25
32
3
10
17
24
31
2
9
16
23
30
1
8
15
22
29
0
7
14
18
25
32
3
10
17
24
31
2
9
16
23
30
1
8
15
22
4
11
18
25
32
3
10
17
24
31
2
9
16
23
33
4
11
18
25
32
3
10
17
24
31
19
26
33
4
11
18
25
32
12
19
26
33
4
34
5