93edo
← 92edo | 93edo | 94edo → |
Theory
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -5.18 | +0.78 | -1.08 | +2.54 | +3.52 | -1.82 | -4.40 | -1.73 | -0.74 | -6.26 | +3.98 |
Relative (%) | -40.2 | +6.1 | -8.4 | +19.7 | +27.3 | -14.1 | -34.1 | -13.4 | -5.7 | -48.6 | +30.9 | |
Steps (reduced) |
147 (54) |
216 (30) |
261 (75) |
295 (16) |
322 (43) |
344 (65) |
363 (84) |
380 (8) |
395 (23) |
408 (36) |
421 (49) |
93 = 3 * 31, and 93 is a contorted 31 through the 7 limit. In the 11-limit the patent val tempers out 4000/3993 and in the 13-limit 144/143, 1188/1183 and 364/363. It provides the optimal patent val for the 11-limit prajapati and 13-limit kumhar temperaments, and the 11 and 13 limit 43&50 temperament. It is the 13th no-3s zeta peak edo.
Since 93edo has good approximations of 13th, 17th and 19th harmonics unlike 31edo (as 838.710 ¢, 103.226 ¢, and 296.774 ¢ respectively, octave-reduced), it also allows one to give a clearer harmonic identity to 31edo's excellent approximation of 13:17:19.
Scales
Meantone Chromatic
- 116.129
- 193.548
- 309.677
- 387.097
- 503.226
- 580.645
- 696.774
- 812.903
- 890.323
- 1006.452
- 1083.871
- 1200.000
Superpyth Chromatic
- 51.613
- 219.355
- 270.968
- 438.710
- 490.323
- 658.065
- 709.677
- 761.290
- 929.032
- 980.645
- 1148.387
- 1200.000
Superpyth Shailaja
- 270.968
- 709.677
- 761.290
- 980.645
- 1200.000
Superpyth Subminor Hexatonic
- 219.355
- 270.968
- 490.323
- 709.677
- 980.645
- 1200.000
Superpyth Subminor Pentatonic
- 270.968
- 490.323
- 709.677
- 980.645
- 1200.000