1059edo
![]() |
This page presents a novelty topic.
It may contain ideas which are less likely to find practical applications in music, or numbers or structures that are arbitrary or exceedingly small, large, or complex. Novelty topics are often developed by a single person or a small group. As such, this page may also contain idiosyncratic terms, notation, or conceptual frameworks. |
![]() |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 1058edo | 1059edo | 1060edo → |
Theory
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.539 | +0.089 | +0.013 | +0.056 | +0.523 | +0.266 | -0.450 | +0.427 | +0.504 | -0.526 | -0.512 |
Relative (%) | -47.5 | +7.8 | +1.1 | +4.9 | +46.2 | +23.4 | -39.7 | +37.7 | +44.5 | -46.4 | -45.2 | |
Steps (reduced) |
1678 (619) |
2459 (341) |
2973 (855) |
3357 (180) |
3664 (487) |
3919 (742) |
4137 (960) |
4329 (93) |
4499 (263) |
4651 (415) |
4790 (554) |
103 steps of 1059edo represent a continued fraction approximation for the secor generator interval in the form of 46/43. In the 2.3.5.7.11.23.43 subgroup this results in a 329 & 1059 temperament. The comma basis for such (assuming both patent vals) is 1376/1375, 2646/2645, 172032/171875, 16401231/16384000, 51759729/51536320.
2118edo, which divides the edostep in two, provides a good correction for 3rd and 11th harmonics.