65edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>JosephRuhf
**Imported revision 601622206 - Original comment: **
Wikispaces>xenwolf
**Imported revision 602901538 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2016-12-07 11:01:08 UTC</tt>.<br>
: This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2016-12-29 17:51:20 UTC</tt>.<br>
: The original revision id was <tt>601622206</tt>.<br>
: The original revision id was <tt>602901538</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 10: Line 10:
=&lt;span style="color: #750063; font-family: 'Times New Roman',Times,serif; font-size: 113%;"&gt;65 tone equal temperament&lt;/span&gt;=  
=&lt;span style="color: #750063; font-family: 'Times New Roman',Times,serif; font-size: 113%;"&gt;65 tone equal temperament&lt;/span&gt;=  


**//65edo//** divides the [[octave]] into 65 equal parts of 18.4615 cents each. It can be characterized as the temperament which tempers out the [[schisma]], 32805/32768, the [[sensipent comma]], 78732/78125, and the [[wuerschmidt comma]]. In the [[7-limit]], there are two different maps; the first is &lt;65 103 151/1 182|, [[tempering out]] 126/125, 245/243 and 686/675, so that 65edo supports sensi temperament, and the second is &lt;65 103 151/1 183|, tempering out 225/224, 3125/3097, 4000/3969 and 5120/5103, so that 65edo supports garibaldi temperament. In both cases, the tuning privileges the [[5-limit]] over the 7-limit, as the 5-limit of 65 is quite accurate. The same can be said for the two different versions of 7-limit [[wuerschmidt temperament]] (wurschmidt and worschmidt) these two mappings provide.
**//65edo//** divides the [[octave]] into 65 equal parts of 18.4615 cents each. It can be characterized as the temperament which tempers out the [[schisma]], 32805/32768, the [[sensipent comma]], 78732/78125, and the [[wuerschmidt comma]]. In the [[7-limit]], there are two different maps; the first is &lt;65 103 151 182|, [[tempering out]] 126/125, 245/243 and 686/675, so that 65edo supports sensi temperament, and the second is &lt;65 103 151 183|, tempering out 225/224, 3125/3097, 4000/3969 and 5120/5103, so that 65edo supports garibaldi temperament. In both cases, the tuning privileges the [[5-limit]] over the 7-limit, as the 5-limit of 65 is quite accurate. The same can be said for the two different versions of 7-limit [[wuerschmidt temperament]] (wurschmidt and worschmidt) these two mappings provide.


65edo approximates the intervals [[3_2|3/2]], [[5_4|5/4]], [[11_8|11/8]] and [[19_16|19/16]] well, so that it does a good job representing the 2.3.5.11.19 [[just intonation subgroup]]. To this one may want to add 13/8 and 17/16, giving the [[19-limit]] no-sevens subgroup 2.3.5.11.13.17.19. Also of interest is the 19-limit [[k*N subgroups|2*65 subgroup]] 2.3.5.49.11.91.119.19, on which 65 has the same tuning and commas as [[130edo]].
65edo approximates the intervals [[3_2|3/2]], [[5_4|5/4]], [[11_8|11/8]] and [[19_16|19/16]] well, so that it does a good job representing the 2.3.5.11.19 [[just intonation subgroup]]. To this one may want to add 13/8 and 17/16, giving the [[19-limit]] no-sevens subgroup 2.3.5.11.13.17.19. Also of interest is the 19-limit [[k*N subgroups|2*65 subgroup]] 2.3.5.49.11.91.119.19, on which 65 has the same tuning and commas as [[130edo]].
Line 17: Line 17:


=Intervals=  
=Intervals=  
|| Degrees of 65-EDO || Cents value ||
||~ [[Degree]] ||~ Size ([[cent|Cents]]) ||
|| 0 || 0 ||
||0 ||&gt;    0.0000 ||
|| 1 || 18.4615 ||
||1 ||&gt;  18.4615 ||
|| 2 || 36.9231 ||
||2 ||&gt;  36.9231 ||
|| 3 || 55.3846 ||
||3 ||&gt;  55.3846 ||
|| 4 || 73.8462 ||
||4 ||&gt;  73.8462 ||
|| 5 || 92.3077 ||
||5 ||&gt;  92.3077 ||
|| 6 || 110.7692/1 ||
||6 ||&gt;  110.7692 ||
|| 7 || 129.2308/1 ||
||7 ||&gt;  129.2308 ||
|| 8 || 147.6923/1 ||
||8 ||&gt;  147.6923 ||
|| 9 || 166.1538/1 ||
||9 ||&gt;  166.1538 ||
|| 10 || 184.6154/1 ||
||= 10 ||&gt;  184.6154 ||
|| 11 || 203.0769/1 ||
||= 11 ||&gt;  203.0769 ||
|| 12 || 221.5385/1 ||
||= 12 ||&gt;  221.5385 ||
|| 13 || 240 ||
||= 13 ||&gt;  240.0000 ||
|| 14 || 258.4615/1 ||
||= 14 ||&gt;  258.4615 ||
|| 15 || 276.9231/1 ||
||= 15 ||&gt;  276.9231 ||
|| 16 || 295.3846/1 ||
||= 16 ||&gt;  295.3846 ||
|| 17 || 313.8462/1 ||
||= 17 ||&gt;  313.8462 ||
|| 18 || 332.3077/1 ||
||= 18 ||&gt;  332.3077 ||
|| 19 || 350.7692/1 ||
||= 19 ||&gt;  350.7692 ||
|| 20 || 369.2308/1 ||
||= 20 ||&gt;  369.2308 ||
|| 21 || 387.6923/1 ||
||= 21 ||&gt;  387.6923 ||
|| 22 || 406.1538/1 ||
||= 22 ||&gt;  406.1538 ||
|| 23 || 424.6154/1 ||
||= 23 ||&gt;  424.6154 ||
|| 24 || 443.0769/1 ||
||= 24 ||&gt;  443.0769 ||
|| 25 || 461.5385/1 ||
||= 25 ||&gt;  461.5385 ||
|| 26 || 480 ||
||= 26 ||&gt;  480.0000 ||
|| 27 || 498.4615/1 ||
||= 27 ||&gt;  498.4615 ||
|| 28 || 516.9231/1 ||
||= 28 ||&gt;  516.9231 ||
|| 29 || 535.3846/1 ||
||= 29 ||&gt;  535.3846 ||
|| 30 || 553.8462/1 ||
||= 30 ||&gt;  553.8462 ||
|| 31 || 572.3077/1 ||
||= 31 ||&gt;  572.3077 ||
|| 32 || 590.7692/1 ||
||= 32 ||&gt;  590.7692 ||
|| 33 || 609.2308/1 ||
||= 33 ||&gt;  609.2308 ||
|| 34 || 627.6923/1 ||
||= 34 ||&gt;  627.6923 ||
|| 35 || 646.1538/1 ||
||= 35 ||&gt;  646.1538 ||
|| 36 || 664.6154/1 ||
||= 36 ||&gt;  664.6154 ||
|| 37 || 683.0769/1 ||
||= 37 ||&gt;  683.0769 ||
|| 38 || 701.5385/1 ||
||= 38 ||&gt;  701.5385 ||
|| 39 || 720 ||
||= 39 ||&gt;  720.0000 ||
|| 40 || 738.4615/1 ||
||= 40 ||&gt;  738.4615 ||
|| 41 || 756.9231/1 ||
||= 41 ||&gt;  756.9231 ||
|| 42 || 775.3846/1 ||
||= 42 ||&gt;  775.3846 ||
|| 43 || 793.8462/1 ||
||= 43 ||&gt;  793.8462 ||
|| 44 || 812.3077/1 ||
||= 44 ||&gt;  812.3077 ||
|| 45 || 830.7692/1 ||
||= 45 ||&gt;  830.7692 ||
|| 46 || 849.2308/1 ||
||= 46 ||&gt;  849.2308 ||
|| 47 || 867.6923/1 ||
||= 47 ||&gt;  867.6923 ||
|| 48 || 886.1538/1 ||
||= 48 ||&gt;  886.1538 ||
|| 49 || 904.6154/1 ||
||= 49 ||&gt;  904.6154 ||
|| 50 || 923.0769/1 ||
||= 50 ||&gt;  923.0769 ||
|| 51 || 941.5385/1 ||
||= 51 ||&gt;  941.5385 ||
|| 52 || 960 ||
||= 52 ||&gt;  960.0000 ||
|| 53 || 978.4615/1 ||
||= 53 ||&gt;  978.4615 ||
|| 54 || 996.9231/1 ||
||= 54 ||&gt;  996.9231 ||
|| 55 || 1015.3846 ||
||= 55 ||&gt; 1015.3846 ||
|| 56 || 1033.8462 ||
||= 56 ||&gt; 1033.8462 ||
|| 57 || 1052.3077 ||
||= 57 ||&gt; 1052.3077 ||
|| 58 || 1070.7692 ||
||= 58 ||&gt; 1070.7692 ||
|| 59 || 1089.2308 ||
||= 59 ||&gt; 1089.2308 ||
|| 60 || 1107.6923 ||
||= 60 ||&gt; 1107.6923 ||
|| 61 || 1126.1538 ||
||= 61 ||&gt; 1126.1538 ||
|| 62 || 1144.6154 ||
||= 62 ||&gt; 1144.6154 ||
|| 63 || 1163.0769 ||
||= 63 ||&gt; 1163.0769 ||
|| 64 || 1181.5385 ||
||= 64 ||&gt; 1181.5385 ||
||= 65 ||&gt; 1200.0000 ||


=Scales=  
=Scales=  
Line 92: Line 93:
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="x65 tone equal temperament"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;&lt;span style="color: #750063; font-family: 'Times New Roman',Times,serif; font-size: 113%;"&gt;65 tone equal temperament&lt;/span&gt;&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="x65 tone equal temperament"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;&lt;span style="color: #750063; font-family: 'Times New Roman',Times,serif; font-size: 113%;"&gt;65 tone equal temperament&lt;/span&gt;&lt;/h1&gt;
  &lt;br /&gt;
  &lt;br /&gt;
&lt;strong&gt;&lt;em&gt;65edo&lt;/em&gt;&lt;/strong&gt; divides the &lt;a class="wiki_link" href="/octave"&gt;octave&lt;/a&gt; into 65 equal parts of 18.4615 cents each. It can be characterized as the temperament which tempers out the &lt;a class="wiki_link" href="/schisma"&gt;schisma&lt;/a&gt;, 32805/32768, the &lt;a class="wiki_link" href="/sensipent%20comma"&gt;sensipent comma&lt;/a&gt;, 78732/78125, and the &lt;a class="wiki_link" href="/wuerschmidt%20comma"&gt;wuerschmidt comma&lt;/a&gt;. In the &lt;a class="wiki_link" href="/7-limit"&gt;7-limit&lt;/a&gt;, there are two different maps; the first is &amp;lt;65 103 151/1 182|, &lt;a class="wiki_link" href="/tempering%20out"&gt;tempering out&lt;/a&gt; 126/125, 245/243 and 686/675, so that 65edo supports sensi temperament, and the second is &amp;lt;65 103 151/1 183|, tempering out 225/224, 3125/3097, 4000/3969 and 5120/5103, so that 65edo supports garibaldi temperament. In both cases, the tuning privileges the &lt;a class="wiki_link" href="/5-limit"&gt;5-limit&lt;/a&gt; over the 7-limit, as the 5-limit of 65 is quite accurate. The same can be said for the two different versions of 7-limit &lt;a class="wiki_link" href="/wuerschmidt%20temperament"&gt;wuerschmidt temperament&lt;/a&gt; (wurschmidt and worschmidt) these two mappings provide.&lt;br /&gt;
&lt;strong&gt;&lt;em&gt;65edo&lt;/em&gt;&lt;/strong&gt; divides the &lt;a class="wiki_link" href="/octave"&gt;octave&lt;/a&gt; into 65 equal parts of 18.4615 cents each. It can be characterized as the temperament which tempers out the &lt;a class="wiki_link" href="/schisma"&gt;schisma&lt;/a&gt;, 32805/32768, the &lt;a class="wiki_link" href="/sensipent%20comma"&gt;sensipent comma&lt;/a&gt;, 78732/78125, and the &lt;a class="wiki_link" href="/wuerschmidt%20comma"&gt;wuerschmidt comma&lt;/a&gt;. In the &lt;a class="wiki_link" href="/7-limit"&gt;7-limit&lt;/a&gt;, there are two different maps; the first is &amp;lt;65 103 151 182|, &lt;a class="wiki_link" href="/tempering%20out"&gt;tempering out&lt;/a&gt; 126/125, 245/243 and 686/675, so that 65edo supports sensi temperament, and the second is &amp;lt;65 103 151 183|, tempering out 225/224, 3125/3097, 4000/3969 and 5120/5103, so that 65edo supports garibaldi temperament. In both cases, the tuning privileges the &lt;a class="wiki_link" href="/5-limit"&gt;5-limit&lt;/a&gt; over the 7-limit, as the 5-limit of 65 is quite accurate. The same can be said for the two different versions of 7-limit &lt;a class="wiki_link" href="/wuerschmidt%20temperament"&gt;wuerschmidt temperament&lt;/a&gt; (wurschmidt and worschmidt) these two mappings provide.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
65edo approximates the intervals &lt;a class="wiki_link" href="/3_2"&gt;3/2&lt;/a&gt;, &lt;a class="wiki_link" href="/5_4"&gt;5/4&lt;/a&gt;, &lt;a class="wiki_link" href="/11_8"&gt;11/8&lt;/a&gt; and &lt;a class="wiki_link" href="/19_16"&gt;19/16&lt;/a&gt; well, so that it does a good job representing the 2.3.5.11.19 &lt;a class="wiki_link" href="/just%20intonation%20subgroup"&gt;just intonation subgroup&lt;/a&gt;. To this one may want to add 13/8 and 17/16, giving the &lt;a class="wiki_link" href="/19-limit"&gt;19-limit&lt;/a&gt; no-sevens subgroup 2.3.5.11.13.17.19. Also of interest is the 19-limit &lt;a class="wiki_link" href="/k%2AN%20subgroups"&gt;2*65 subgroup&lt;/a&gt; 2.3.5.49.11.91.119.19, on which 65 has the same tuning and commas as &lt;a class="wiki_link" href="/130edo"&gt;130edo&lt;/a&gt;.&lt;br /&gt;
65edo approximates the intervals &lt;a class="wiki_link" href="/3_2"&gt;3/2&lt;/a&gt;, &lt;a class="wiki_link" href="/5_4"&gt;5/4&lt;/a&gt;, &lt;a class="wiki_link" href="/11_8"&gt;11/8&lt;/a&gt; and &lt;a class="wiki_link" href="/19_16"&gt;19/16&lt;/a&gt; well, so that it does a good job representing the 2.3.5.11.19 &lt;a class="wiki_link" href="/just%20intonation%20subgroup"&gt;just intonation subgroup&lt;/a&gt;. To this one may want to add 13/8 and 17/16, giving the &lt;a class="wiki_link" href="/19-limit"&gt;19-limit&lt;/a&gt; no-sevens subgroup 2.3.5.11.13.17.19. Also of interest is the 19-limit &lt;a class="wiki_link" href="/k%2AN%20subgroups"&gt;2*65 subgroup&lt;/a&gt; 2.3.5.49.11.91.119.19, on which 65 has the same tuning and commas as &lt;a class="wiki_link" href="/130edo"&gt;130edo&lt;/a&gt;.&lt;br /&gt;
Line 103: Line 104:
&lt;table class="wiki_table"&gt;
&lt;table class="wiki_table"&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;Degrees of 65-EDO&lt;br /&gt;
        &lt;th&gt;&lt;a class="wiki_link" href="/Degree"&gt;Degree&lt;/a&gt;&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;Size (&lt;a class="wiki_link" href="/cent"&gt;Cents&lt;/a&gt;)&lt;br /&gt;
&lt;/th&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
         &lt;td style="text-align: center;"&gt;0&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;Cents value&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;0.0000&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;0&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;1&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;0&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;18.4615&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;1&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;2&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;18.4615&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;36.9231&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;2&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;3&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;36.9231&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;55.3846&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;3&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;4&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;55.3846&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;73.8462&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;4&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;5&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;73.8462&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;92.3077&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;5&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;6&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;92.3077&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;110.7692&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;6&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;7&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;110.7692/1&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;129.2308&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;7&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;8&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;129.2308/1&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;147.6923&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;8&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;9&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;147.6923/1&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;166.1538&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;9&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;10&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;166.1538/1&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;184.6154&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;10&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;11&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;184.6154/1&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;203.0769&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;11&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;12&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;203.0769/1&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;221.5385&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;12&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;13&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;221.5385/1&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;240.0000&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;13&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;14&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;240&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;258.4615&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;14&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;15&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;258.4615/1&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;276.9231&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;15&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;16&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;276.9231/1&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;295.3846&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;16&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;17&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;295.3846/1&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;313.8462&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;17&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;18&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;313.8462/1&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;332.3077&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;18&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;19&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;332.3077/1&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;350.7692&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;19&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;20&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;350.7692/1&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;369.2308&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;20&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;21&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;369.2308/1&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;387.6923&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;21&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;22&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;387.6923/1&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;406.1538&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;22&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;23&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;406.1538/1&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;424.6154&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;23&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;24&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;424.6154/1&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;443.0769&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;24&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;25&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;443.0769/1&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;461.5385&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;25&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;26&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;461.5385/1&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;480.0000&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;26&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;27&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;480&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;498.4615&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;27&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;28&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;498.4615/1&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;516.9231&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;28&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;29&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;516.9231/1&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;535.3846&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;29&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;30&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;535.3846/1&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;553.8462&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;30&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;31&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;553.8462/1&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;572.3077&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;31&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;32&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;572.3077/1&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;590.7692&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;32&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;33&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;590.7692/1&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;609.2308&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;33&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;34&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;609.2308/1&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;627.6923&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;34&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;35&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;627.6923/1&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;646.1538&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;35&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;36&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;646.1538/1&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;664.6154&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;36&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;37&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;664.6154/1&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;683.0769&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;37&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;38&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;683.0769/1&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;701.5385&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;38&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;39&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;701.5385/1&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;720.0000&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;39&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;40&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;720&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;738.4615&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;40&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;41&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;738.4615/1&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;756.9231&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;41&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;42&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;756.9231/1&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;775.3846&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;42&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;43&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;775.3846/1&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;793.8462&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;43&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;44&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;793.8462/1&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;812.3077&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;44&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;45&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;812.3077/1&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;830.7692&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;45&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;46&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;830.7692/1&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;849.2308&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;46&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;47&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;849.2308/1&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;867.6923&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;47&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;48&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;867.6923/1&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;886.1538&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;48&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;49&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;886.1538/1&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;904.6154&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;49&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;50&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;904.6154/1&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;923.0769&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;50&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;51&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;923.0769/1&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;941.5385&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;51&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;52&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;941.5385/1&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;960.0000&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;52&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;53&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;960&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;978.4615&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;53&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;54&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;978.4615/1&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;996.9231&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;54&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;55&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;996.9231/1&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;1015.3846&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;55&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;56&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1015.3846&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;1033.8462&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;56&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;57&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1033.8462&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;1052.3077&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;57&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;58&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1052.3077&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;1070.7692&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;58&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;59&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1070.7692&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;1089.2308&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;59&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;60&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1089.2308&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;1107.6923&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;60&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;61&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1107.6923&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;1126.1538&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;61&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;62&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1126.1538&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;1144.6154&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;62&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;63&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1144.6154&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;1163.0769&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;63&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;64&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1163.0769&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;1181.5385&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;64&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;65&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1181.5385&lt;br /&gt;
         &lt;td style="text-align: right;"&gt;1200.0000&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;

Revision as of 17:51, 29 December 2016

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author xenwolf and made on 2016-12-29 17:51:20 UTC.
The original revision id was 602901538.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

----

=<span style="color: #750063; font-family: 'Times New Roman',Times,serif; font-size: 113%;">65 tone equal temperament</span>= 

**//65edo//** divides the [[octave]] into 65 equal parts of 18.4615 cents each. It can be characterized as the temperament which tempers out the [[schisma]], 32805/32768, the [[sensipent comma]], 78732/78125, and the [[wuerschmidt comma]]. In the [[7-limit]], there are two different maps; the first is <65 103 151 182|, [[tempering out]] 126/125, 245/243 and 686/675, so that 65edo supports sensi temperament, and the second is <65 103 151 183|, tempering out 225/224, 3125/3097, 4000/3969 and 5120/5103, so that 65edo supports garibaldi temperament. In both cases, the tuning privileges the [[5-limit]] over the 7-limit, as the 5-limit of 65 is quite accurate. The same can be said for the two different versions of 7-limit [[wuerschmidt temperament]] (wurschmidt and worschmidt) these two mappings provide.

65edo approximates the intervals [[3_2|3/2]], [[5_4|5/4]], [[11_8|11/8]] and [[19_16|19/16]] well, so that it does a good job representing the 2.3.5.11.19 [[just intonation subgroup]]. To this one may want to add 13/8 and 17/16, giving the [[19-limit]] no-sevens subgroup 2.3.5.11.13.17.19. Also of interest is the 19-limit [[k*N subgroups|2*65 subgroup]] 2.3.5.49.11.91.119.19, on which 65 has the same tuning and commas as [[130edo]].

65edo contains [[13edo]] as a subset. The offset between a just perfect fifth at 702 cents and the 13edo superfifth at 738.5 cents, is approximately 2 degrees of 65edo. Therefore, an instrument fretted to 13edo, with open strings tuned to 3-limit intervals such as 4/3, 3/2, 9/8, 16/9 etc, will approximate a subset of 65edo. For an example of this, see [[https://soundcloud.com/andrew_heathwaite/rubble-a-xenuke-unfolded|Rubble: a Xenuke Unfolded]].

=Intervals= 
||~ [[Degree]] ||~ Size ([[cent|Cents]]) ||
||=  0 ||>    0.0000 ||
||=  1 ||>   18.4615 ||
||=  2 ||>   36.9231 ||
||=  3 ||>   55.3846 ||
||=  4 ||>   73.8462 ||
||=  5 ||>   92.3077 ||
||=  6 ||>  110.7692 ||
||=  7 ||>  129.2308 ||
||=  8 ||>  147.6923 ||
||=  9 ||>  166.1538 ||
||= 10 ||>  184.6154 ||
||= 11 ||>  203.0769 ||
||= 12 ||>  221.5385 ||
||= 13 ||>  240.0000 ||
||= 14 ||>  258.4615 ||
||= 15 ||>  276.9231 ||
||= 16 ||>  295.3846 ||
||= 17 ||>  313.8462 ||
||= 18 ||>  332.3077 ||
||= 19 ||>  350.7692 ||
||= 20 ||>  369.2308 ||
||= 21 ||>  387.6923 ||
||= 22 ||>  406.1538 ||
||= 23 ||>  424.6154 ||
||= 24 ||>  443.0769 ||
||= 25 ||>  461.5385 ||
||= 26 ||>  480.0000 ||
||= 27 ||>  498.4615 ||
||= 28 ||>  516.9231 ||
||= 29 ||>  535.3846 ||
||= 30 ||>  553.8462 ||
||= 31 ||>  572.3077 ||
||= 32 ||>  590.7692 ||
||= 33 ||>  609.2308 ||
||= 34 ||>  627.6923 ||
||= 35 ||>  646.1538 ||
||= 36 ||>  664.6154 ||
||= 37 ||>  683.0769 ||
||= 38 ||>  701.5385 ||
||= 39 ||>  720.0000 ||
||= 40 ||>  738.4615 ||
||= 41 ||>  756.9231 ||
||= 42 ||>  775.3846 ||
||= 43 ||>  793.8462 ||
||= 44 ||>  812.3077 ||
||= 45 ||>  830.7692 ||
||= 46 ||>  849.2308 ||
||= 47 ||>  867.6923 ||
||= 48 ||>  886.1538 ||
||= 49 ||>  904.6154 ||
||= 50 ||>  923.0769 ||
||= 51 ||>  941.5385 ||
||= 52 ||>  960.0000 ||
||= 53 ||>  978.4615 ||
||= 54 ||>  996.9231 ||
||= 55 ||> 1015.3846 ||
||= 56 ||> 1033.8462 ||
||= 57 ||> 1052.3077 ||
||= 58 ||> 1070.7692 ||
||= 59 ||> 1089.2308 ||
||= 60 ||> 1107.6923 ||
||= 61 ||> 1126.1538 ||
||= 62 ||> 1144.6154 ||
||= 63 ||> 1163.0769 ||
||= 64 ||> 1181.5385 ||
||= 65 ||> 1200.0000 ||

=Scales= 
[[photia7]]
[[photia12]]

Original HTML content:

<html><head><title>65edo</title></head><body><hr />
<br />
<!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="x65 tone equal temperament"></a><!-- ws:end:WikiTextHeadingRule:0 --><span style="color: #750063; font-family: 'Times New Roman',Times,serif; font-size: 113%;">65 tone equal temperament</span></h1>
 <br />
<strong><em>65edo</em></strong> divides the <a class="wiki_link" href="/octave">octave</a> into 65 equal parts of 18.4615 cents each. It can be characterized as the temperament which tempers out the <a class="wiki_link" href="/schisma">schisma</a>, 32805/32768, the <a class="wiki_link" href="/sensipent%20comma">sensipent comma</a>, 78732/78125, and the <a class="wiki_link" href="/wuerschmidt%20comma">wuerschmidt comma</a>. In the <a class="wiki_link" href="/7-limit">7-limit</a>, there are two different maps; the first is &lt;65 103 151 182|, <a class="wiki_link" href="/tempering%20out">tempering out</a> 126/125, 245/243 and 686/675, so that 65edo supports sensi temperament, and the second is &lt;65 103 151 183|, tempering out 225/224, 3125/3097, 4000/3969 and 5120/5103, so that 65edo supports garibaldi temperament. In both cases, the tuning privileges the <a class="wiki_link" href="/5-limit">5-limit</a> over the 7-limit, as the 5-limit of 65 is quite accurate. The same can be said for the two different versions of 7-limit <a class="wiki_link" href="/wuerschmidt%20temperament">wuerschmidt temperament</a> (wurschmidt and worschmidt) these two mappings provide.<br />
<br />
65edo approximates the intervals <a class="wiki_link" href="/3_2">3/2</a>, <a class="wiki_link" href="/5_4">5/4</a>, <a class="wiki_link" href="/11_8">11/8</a> and <a class="wiki_link" href="/19_16">19/16</a> well, so that it does a good job representing the 2.3.5.11.19 <a class="wiki_link" href="/just%20intonation%20subgroup">just intonation subgroup</a>. To this one may want to add 13/8 and 17/16, giving the <a class="wiki_link" href="/19-limit">19-limit</a> no-sevens subgroup 2.3.5.11.13.17.19. Also of interest is the 19-limit <a class="wiki_link" href="/k%2AN%20subgroups">2*65 subgroup</a> 2.3.5.49.11.91.119.19, on which 65 has the same tuning and commas as <a class="wiki_link" href="/130edo">130edo</a>.<br />
<br />
65edo contains <a class="wiki_link" href="/13edo">13edo</a> as a subset. The offset between a just perfect fifth at 702 cents and the 13edo superfifth at 738.5 cents, is approximately 2 degrees of 65edo. Therefore, an instrument fretted to 13edo, with open strings tuned to 3-limit intervals such as 4/3, 3/2, 9/8, 16/9 etc, will approximate a subset of 65edo. For an example of this, see <a class="wiki_link_ext" href="https://soundcloud.com/andrew_heathwaite/rubble-a-xenuke-unfolded" rel="nofollow">Rubble: a Xenuke Unfolded</a>.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="Intervals"></a><!-- ws:end:WikiTextHeadingRule:2 -->Intervals</h1>
 

<table class="wiki_table">
    <tr>
        <th><a class="wiki_link" href="/Degree">Degree</a><br />
</th>
        <th>Size (<a class="wiki_link" href="/cent">Cents</a>)<br />
</th>
    </tr>
    <tr>
        <td style="text-align: center;">0<br />
</td>
        <td style="text-align: right;">0.0000<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">1<br />
</td>
        <td style="text-align: right;">18.4615<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">2<br />
</td>
        <td style="text-align: right;">36.9231<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">3<br />
</td>
        <td style="text-align: right;">55.3846<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">4<br />
</td>
        <td style="text-align: right;">73.8462<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">5<br />
</td>
        <td style="text-align: right;">92.3077<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">6<br />
</td>
        <td style="text-align: right;">110.7692<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">7<br />
</td>
        <td style="text-align: right;">129.2308<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">8<br />
</td>
        <td style="text-align: right;">147.6923<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">9<br />
</td>
        <td style="text-align: right;">166.1538<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">10<br />
</td>
        <td style="text-align: right;">184.6154<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">11<br />
</td>
        <td style="text-align: right;">203.0769<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">12<br />
</td>
        <td style="text-align: right;">221.5385<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">13<br />
</td>
        <td style="text-align: right;">240.0000<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">14<br />
</td>
        <td style="text-align: right;">258.4615<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">15<br />
</td>
        <td style="text-align: right;">276.9231<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">16<br />
</td>
        <td style="text-align: right;">295.3846<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">17<br />
</td>
        <td style="text-align: right;">313.8462<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">18<br />
</td>
        <td style="text-align: right;">332.3077<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">19<br />
</td>
        <td style="text-align: right;">350.7692<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">20<br />
</td>
        <td style="text-align: right;">369.2308<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">21<br />
</td>
        <td style="text-align: right;">387.6923<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">22<br />
</td>
        <td style="text-align: right;">406.1538<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">23<br />
</td>
        <td style="text-align: right;">424.6154<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">24<br />
</td>
        <td style="text-align: right;">443.0769<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">25<br />
</td>
        <td style="text-align: right;">461.5385<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">26<br />
</td>
        <td style="text-align: right;">480.0000<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">27<br />
</td>
        <td style="text-align: right;">498.4615<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">28<br />
</td>
        <td style="text-align: right;">516.9231<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">29<br />
</td>
        <td style="text-align: right;">535.3846<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">30<br />
</td>
        <td style="text-align: right;">553.8462<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">31<br />
</td>
        <td style="text-align: right;">572.3077<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">32<br />
</td>
        <td style="text-align: right;">590.7692<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">33<br />
</td>
        <td style="text-align: right;">609.2308<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">34<br />
</td>
        <td style="text-align: right;">627.6923<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">35<br />
</td>
        <td style="text-align: right;">646.1538<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">36<br />
</td>
        <td style="text-align: right;">664.6154<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">37<br />
</td>
        <td style="text-align: right;">683.0769<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">38<br />
</td>
        <td style="text-align: right;">701.5385<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">39<br />
</td>
        <td style="text-align: right;">720.0000<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">40<br />
</td>
        <td style="text-align: right;">738.4615<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">41<br />
</td>
        <td style="text-align: right;">756.9231<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">42<br />
</td>
        <td style="text-align: right;">775.3846<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">43<br />
</td>
        <td style="text-align: right;">793.8462<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">44<br />
</td>
        <td style="text-align: right;">812.3077<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">45<br />
</td>
        <td style="text-align: right;">830.7692<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">46<br />
</td>
        <td style="text-align: right;">849.2308<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">47<br />
</td>
        <td style="text-align: right;">867.6923<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">48<br />
</td>
        <td style="text-align: right;">886.1538<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">49<br />
</td>
        <td style="text-align: right;">904.6154<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">50<br />
</td>
        <td style="text-align: right;">923.0769<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">51<br />
</td>
        <td style="text-align: right;">941.5385<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">52<br />
</td>
        <td style="text-align: right;">960.0000<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">53<br />
</td>
        <td style="text-align: right;">978.4615<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">54<br />
</td>
        <td style="text-align: right;">996.9231<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">55<br />
</td>
        <td style="text-align: right;">1015.3846<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">56<br />
</td>
        <td style="text-align: right;">1033.8462<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">57<br />
</td>
        <td style="text-align: right;">1052.3077<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">58<br />
</td>
        <td style="text-align: right;">1070.7692<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">59<br />
</td>
        <td style="text-align: right;">1089.2308<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">60<br />
</td>
        <td style="text-align: right;">1107.6923<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">61<br />
</td>
        <td style="text-align: right;">1126.1538<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">62<br />
</td>
        <td style="text-align: right;">1144.6154<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">63<br />
</td>
        <td style="text-align: right;">1163.0769<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">64<br />
</td>
        <td style="text-align: right;">1181.5385<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">65<br />
</td>
        <td style="text-align: right;">1200.0000<br />
</td>
    </tr>
</table>

<br />
<!-- ws:start:WikiTextHeadingRule:4:&lt;h1&gt; --><h1 id="toc2"><a name="Scales"></a><!-- ws:end:WikiTextHeadingRule:4 -->Scales</h1>
 <a class="wiki_link" href="/photia7">photia7</a><br />
<a class="wiki_link" href="/photia12">photia12</a></body></html>