193edo: Difference between revisions
Jump to navigation
Jump to search
m Sort key |
m Infobox ET now computes most parameters automatically |
||
Line 1: | Line 1: | ||
{{Infobox ET | {{Infobox ET}} | ||
}} | |||
The '''193 equal divisions of the octave''' ('''193edo'''), or the '''193(-tone) equal temperament''' ('''193tet''', '''193et''') when viewed from a [[regular temperament]] perspective, is the [[EDO|equal division of the octave]] into 193 parts of about 6.22 [[cent]]s each. | The '''193 equal divisions of the octave''' ('''193edo'''), or the '''193(-tone) equal temperament''' ('''193tet''', '''193et''') when viewed from a [[regular temperament]] perspective, is the [[EDO|equal division of the octave]] into 193 parts of about 6.22 [[cent]]s each. | ||
Revision as of 16:12, 4 October 2022
← 192edo | 193edo | 194edo → |
The 193 equal divisions of the octave (193edo), or the 193(-tone) equal temperament (193tet, 193et) when viewed from a regular temperament perspective, is the equal division of the octave into 193 parts of about 6.22 cents each.
Theory
193edo provides the optimal patent val for the sqrtphi temperament in the 13-, 17- and 19-limits, and for the 13-limit minos and vish temperaments. It is the 44th prime edo.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | +0.64 | -0.82 | +1.12 | +2.05 | -1.15 | +0.74 | +0.93 | -0.30 | +2.55 | -0.99 |
Relative (%) | +0.0 | +10.2 | -13.2 | +18.1 | +33.0 | -18.5 | +12.0 | +15.0 | -4.7 | +41.0 | -16.0 | |
Steps (reduced) |
193 (0) |
306 (113) |
448 (62) |
542 (156) |
668 (89) |
714 (135) |
789 (17) |
820 (48) |
873 (101) |
938 (166) |
956 (184) |
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [306 -193⟩ | [⟨193 306]] | -0.2005 | 0.2005 | 3.23 |
2.3.5 | 15625/15552, [50 -33 1⟩ | [⟨193 306 448]] | -0.0158 | 0.3084 | 4.96 |
2.3.5.7 | 5120/5103, 15625/15552, 16875/16807 | [⟨193 306 448 542]] | -0.1118 | 0.3146 | 5.06 |
2.3.5.7.11 | 540/539, 1375/1372, 4375/4356, 5120/5103 | [⟨193 306 448 542 668]] | -0.2080 | 0.3408 | 5.48 |
2.3.5.7.11.13 | 325/324, 364/363, 540/539, 625/624, 4096/4095 | [⟨193 306 448 542 668 714]] | -0.1216 | 0.3662 | 5.89 |
2.3.5.7.11.13.17 | 325/324, 364/363, 375/374, 442/441, 595/594, 4096/4095 | [⟨193 306 448 542 668 714 789]] | -0.1302 | 0.3397 | 5.46 |
2.3.5.7.11.13.17.19 | 325/324, 364/363, 375/374, 400/399, 442/441, 595/594, 1216/1215 | [⟨193 306 448 542 668 714 789 820]] | -0.1414 | 0.3191 | 5.13 |
Scales
- Approximation of sqrt (π): 159\193 (988.60104 cents), and of φ: 134\193 (833.16062 cents), both inside in the superdiatonic scale: 25 25 25 9 25 25 25 25 9