193edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Xenllium (talk | contribs)
No edit summary
Line 1: Line 1:
=<span style="color: #003838; font-family: 'Times New Roman',Times,serif; font-size: 113%;">193 tone equal temperament</span>=
{{Infobox ET
| Prime factorization = 193 (prime)
| Step size = 6.21762¢
| Fifth = 113\193 (702.59¢)
| Semitones = 19:14 (118.13¢ : 87.05¢)
| Consistency = 11
}}
The '''193 equal divisions of the octave''' ('''193edo'''), or the '''193(-tone) equal temperament''' ('''193tet''', '''193et''') when viewed from a [[regular temperament]] perspective, is the [[EDO|equal division of the octave]] into 193 parts of about 6.21762 [[cent]]s each.


The '''193EDO''' divides the octave into 193 equal parts of 6.21762 cents each. It provides the [[Optimal_patent_val|optimal patent val]] for [[Kleismic_family#Sqrtphi|sqrtphi temperament]] in the 13-, 17- and 19- limits, and for 13-limit [[Swetismic_temperaments#Minos|minos]] and [[Mirkwai_family#Indra|vish]] temperaments.
== Theory ==
193edo provides the [[optimal patent val]] for [[Kleismic_family #Sqrtphi|sqrtphi temperament]] in the 13-, 17- and 19- limits, and for 13-limit [[Swetismic_temperaments #Minos|minos]] and [[Mirkwai_family #Indra|vish]] temperaments. It is the 44th [[prime_numbers|prime]] EDO.


=== Prime harmonics ===
{{Primes in edo|193}}
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" | Subgroup
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal 8ve <br>stretch (¢)
! colspan="2" | Tuning error
|-
! [[TE error|Absolute]] (¢)
! [[TE simple badness|Relative]] (%)
|-
| 2.3
| {{monzo| 306 -193 }}
| [{{val| 193 306 }}]
| -0.2005
| 0.2005
| 3.225
|-
| 2.3.5
| 15625/15552, {{monzo|50 -33 1}}
| [{{val| 193 306 448 }}]
| -0.0158
| 0.3084
| 4.960
|-
| 2.3.5.7
| 5120/5103, 15625/15552, 16875/16807
| [{{val| 193 306 448 542 }}]
| -0.1118
| 0.3146
| 5.059
|-
| 2.3.5.7.11
| 540/539, 1375/1372, 4375/4356, 5120/5103
| [{{val| 193 306 448 542 668 }}]
| -0.2080
| 0.3408
| 5.481
|-
| 2.3.5.7.11.13
| 325/324, 364/363, 540/539, 625/624, 4096/4095
| [{{val| 193 306 448 542 668 714 }}]
| -0.1216
| 0.3662
| 5.890
|-
| 2.3.5.7.11.13.17
| 325/324, 364/363, 375/374, 442/441, 595/594, 4096/4095
| [{{val| 193 306 448 542 668 714 789 }}]
| -0.1302
| 0.3397
| 5.464
|-
| 2.3.5.7.11.13.17.19
| 325/324, 364/363, 375/374, 400/399, 442/441, 595/594, 1216/1215
| [{{val| 193 306 448 542 668 714 789 820 }}]
| -0.1414
| 0.3191
| 5.133
|}
== Sqrtphi scale in 193edo ==
Approximation of the intervals:
Approximation of the intervals:


Line 9: Line 82:
Phi: '''134\193''' (833.16062 cents), both inside in the [[7L_2s|superdiatonic]] scale: 25 25 25 9 25 25 25 25 9
Phi: '''134\193''' (833.16062 cents), both inside in the [[7L_2s|superdiatonic]] scale: 25 25 25 9 25 25 25 25 9


193edo is the 44th [[prime_numbers|prime]] EDO.
[[Category:Sqrtphi]]
 
[[Category:sqrtphi]]
[[Category:Equal divisions of the octave]]
[[Category:Equal divisions of the octave]]
[[Category:Prime EDO]]
[[Category:Prime EDO]]

Revision as of 12:28, 20 January 2022

← 192edo 193edo 194edo →
Prime factorization 193 (prime)
Step size 6.21762 ¢ 
Fifth 113\193 (702.591 ¢)
Semitones (A1:m2) 19:14 (118.1 ¢ : 87.05 ¢)
Consistency limit 11
Distinct consistency limit 11

The 193 equal divisions of the octave (193edo), or the 193(-tone) equal temperament (193tet, 193et) when viewed from a regular temperament perspective, is the equal division of the octave into 193 parts of about 6.21762 cents each.

Theory

193edo provides the optimal patent val for sqrtphi temperament in the 13-, 17- and 19- limits, and for 13-limit minos and vish temperaments. It is the 44th prime EDO.

Prime harmonics

Script error: No such module "primes_in_edo".

Regular temperament properties

Subgroup Comma list Mapping Optimal 8ve
stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [306 -193 [193 306]] -0.2005 0.2005 3.225
2.3.5 15625/15552, [50 -33 1 [193 306 448]] -0.0158 0.3084 4.960
2.3.5.7 5120/5103, 15625/15552, 16875/16807 [193 306 448 542]] -0.1118 0.3146 5.059
2.3.5.7.11 540/539, 1375/1372, 4375/4356, 5120/5103 [193 306 448 542 668]] -0.2080 0.3408 5.481
2.3.5.7.11.13 325/324, 364/363, 540/539, 625/624, 4096/4095 [193 306 448 542 668 714]] -0.1216 0.3662 5.890
2.3.5.7.11.13.17 325/324, 364/363, 375/374, 442/441, 595/594, 4096/4095 [193 306 448 542 668 714 789]] -0.1302 0.3397 5.464
2.3.5.7.11.13.17.19 325/324, 364/363, 375/374, 400/399, 442/441, 595/594, 1216/1215 [193 306 448 542 668 714 789 820]] -0.1414 0.3191 5.133

Sqrtphi scale in 193edo

Approximation of the intervals:

Square root of Pi: 159\193 (988.60104 cents), and

Phi: 134\193 (833.16062 cents), both inside in the superdiatonic scale: 25 25 25 9 25 25 25 25 9