Turkish maqam music temperaments: Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
[[Ozan Yarman]] has proposed defining the tuning of Turkish maqam <span style="">music</span> using a [[MOSScales|MOS]] of 79 or 80 notes out of 159. This means a generator of 2/159, which suggests the 19-limit mapping: | [[Ozan Yarman]] has proposed defining the tuning of Turkish maqam <span style="">music</span> using a [[MOSScales|MOS]] of 79 or 80 notes out of 159. This means a generator of 2/159, which suggests the 19-limit mapping: | ||
[ | [{{val|1 2 3 2 4 4 4 5}}, {{val|0 -33 -54 64 -43 -24 7 -60}}] <br>vs. <br>[{{val|1 2 3 4 4 4 4 5}}, {{val|0 -33 -54 -95 -43 -24 7 -60}}] | ||
The first mapping may be called 79&159 in terms of [[patent val]]s, and the second 80&159. In any event both mappings can be used inconsistently. A Pythagorean tuning, i.e. one with pure fifths, is also possible. | The first mapping may be called 79&159 in terms of [[patent val]]s, and the second 80&159. In any event both mappings can be used inconsistently. A Pythagorean tuning, i.e. one with pure fifths, is also possible. | ||
Line 9: | Line 9: | ||
[[Comma list]]: 10976/10935, 244140625/243045684 | [[Comma list]]: 10976/10935, 244140625/243045684 | ||
[[Mapping]]: [ | [[Mapping]]: [{{val|1 2 3 4}}, {{val|0 -33 -54 -95}}] | ||
{{Multival|legend=1| 33 54 95 9 58 69}} | {{Multival|legend=1| 33 54 95 9 58 69}} | ||
Line 22: | Line 22: | ||
Comma list: 3025/3024, 4000/3993, 10976/10935 | Comma list: 3025/3024, 4000/3993, 10976/10935 | ||
Mapping: [ | Mapping: [{{val|1 2 3 4 4}}, {{val|0 -33 -54 -95 -43}}] | ||
POTE generator: ~121/120 = 15.0658 | POTE generator: ~121/120 = 15.0658 | ||
Line 33: | Line 33: | ||
Comma list: 325/324, 364/363, 1001/1000, 10976/10935 | Comma list: 325/324, 364/363, 1001/1000, 10976/10935 | ||
Mapping: [ | Mapping: [{{val|1 2 3 4 4 4}}, {{val|0 -33 -54 -95 -43 -24}}] | ||
POTE generator: ~121/120 = 15.0752 | POTE generator: ~121/120 = 15.0752 | ||
Line 44: | Line 44: | ||
Comma list: 325/324, 364/363, 595/594, 1001/1000, 10976/10935 | Comma list: 325/324, 364/363, 595/594, 1001/1000, 10976/10935 | ||
Mapping: [ | Mapping: [{{val|1 2 3 4 4 4 4}}, {{val|0 -33 -54 -95 -43 -24 7}}] | ||
POTE generator: ~120/119 = 15.0715 | POTE generator: ~120/119 = 15.0715 | ||
Line 55: | Line 55: | ||
Comma list: 325/324, 361/360, 364/363, 595/594, 1001/1000, 1521/1520 | Comma list: 325/324, 361/360, 364/363, 595/594, 1001/1000, 1521/1520 | ||
Mapping: [ | Mapping: [{{val|1 2 3 4 4 4 4 5}}, {{val|0 -33 -54 -95 -43 -24 7 -60}}] | ||
POTE generator: ~120/119 = 15.0713 | POTE generator: ~120/119 = 15.0713 | ||
Line 66: | Line 66: | ||
[[Comma list]]: 5359375/5308416, 390625000/387420489 | [[Comma list]]: 5359375/5308416, 390625000/387420489 | ||
[[Mapping]]: [ | [[Mapping]]: [{{val|1 2 3 2}}, {{val|0 -33 -54 64}}] | ||
[[POTE generator]]: ~6144/6125 = 15.1062 | [[POTE generator]]: ~6144/6125 = 15.1062 | ||
Line 77: | Line 77: | ||
Comma list: 385/384, 4000/3993, 78121827/77948684 | Comma list: 385/384, 4000/3993, 78121827/77948684 | ||
Mapping: [ | Mapping: [{{val|1 2 3 2 4}}, {{val|0 -33 -54 64 -43}}] | ||
POTE generator: ~121/120 = 15.1071 | POTE generator: ~121/120 = 15.1071 | ||
Line 88: | Line 88: | ||
Comma list: 325/324, 385/384, 1575/1573, 85683/85184 | Comma list: 325/324, 385/384, 1575/1573, 85683/85184 | ||
Mapping: [ | Mapping: [{{val|1 2 3 2 4 4}}, {{val|0 -33 -54 64 -43 -24}}] | ||
POTE generator: ~105/104 = 15.1071 | POTE generator: ~105/104 = 15.1071 | ||
Line 99: | Line 99: | ||
Comma list: 273/272, 325/324, 385/384, 1575/1573, 4928/4913 | Comma list: 273/272, 325/324, 385/384, 1575/1573, 4928/4913 | ||
Mapping: [ | Mapping: [{{val|1 2 3 2 4 4 4}}, {{val|0 -33 -54 64 -43 -24 7}}] | ||
POTE generator: ~105/104 = 15.1037 | POTE generator: ~105/104 = 15.1037 | ||
Line 106: | Line 106: | ||
Badness: 0.051019 | Badness: 0.051019 | ||
=== 19-limit === | |||
Comma list: 273/272, 325/324, 385/384, 665/663, 969/968, 1575/1573 | |||
Mapping: [{{val|1 2 3 2 4 4 4 5}}, {{val|0 -33 -54 64 -43 -24 7 -60}}] | |||
POTE generator: ~105/104 = 15.1013 | |||
Vals: {{Val list| 79h, 159 }} | |||
Badness: 0.038430 | |||
= Karadeniz temperament = | = Karadeniz temperament = | ||
K. E. Karadeniz proposed a 41 note MOS with generator 31/106, giving a "hemigaribaldi" type of tuning, with an 11/9 neutral third generator. It's more plausible as an 11-limit system than 13-limit; the 13-limit wedgie is: | K. E. Karadeniz proposed a 41 note MOS with generator 31/106, giving a "hemigaribaldi" type of tuning, with an 11/9 neutral third generator. It's more plausible as an 11-limit system than 13-limit; the 13-limit wedgie is: | ||
{{multival|2 -16 -28 5 40 -30 -50 1 56 -20 67 152 111 216 120}} | |||
which in the 11-limit becomes: | which in the 11-limit becomes: | ||
{{multival|2 -16 -28 5 -30 -50 1 -20 67 111}} | |||
It tempers out 3125/3087, 4000/3969, 243/242, 5120/5103, 225/224, and 3025/3024, and can also be called 41&106. Aside from 31/106, 43/147 or 74/253 can be recommended as generators. | It tempers out 3125/3087, 4000/3969, 243/242, 5120/5103, 225/224, and 3025/3024, and can also be called 41&106. Aside from 31/106, 43/147 or 74/253 can be recommended as generators. | ||
Line 121: | Line 132: | ||
[[Comma list]]: 225/224, 243/242, 3125/3087 | [[Comma list]]: 225/224, 243/242, 3125/3087 | ||
[[Mapping]]: [ | [[Mapping]]: [{{val|1 1 7 11 2}}, {{val|0 2 -16 -28 5}}] | ||
[[POTE generator]]: ~11/9 = 350.994 | [[POTE generator]]: ~11/9 = 350.994 | ||
{{Val list| 41, 106, 147 }} | {{Val list|legend=1| 41, 106, 147 }} | ||
[[Badness]]: 0.041562 | [[Badness]]: 0.041562 | ||
Line 132: | Line 143: | ||
Comma list: 225/224, 243/242, 325/324, 640/637 | Comma list: 225/224, 243/242, 325/324, 640/637 | ||
Mapping: [ | Mapping: [{{val|1 1 7 11 2 -8}}, {{val|0 2 -16 -28 5 40}}] | ||
POTE generator: ~11/9 = 351.014 | POTE generator: ~11/9 = 351.014 |
Revision as of 09:50, 15 May 2021
Yarman temperament
Ozan Yarman has proposed defining the tuning of Turkish maqam music using a MOS of 79 or 80 notes out of 159. This means a generator of 2/159, which suggests the 19-limit mapping:
[⟨1 2 3 2 4 4 4 5], ⟨0 -33 -54 64 -43 -24 7 -60]]
vs.
[⟨1 2 3 4 4 4 4 5], ⟨0 -33 -54 -95 -43 -24 7 -60]]
The first mapping may be called 79&159 in terms of patent vals, and the second 80&159. In any event both mappings can be used inconsistently. A Pythagorean tuning, i.e. one with pure fifths, is also possible.
Yarman I (80&159)
Comma list: 10976/10935, 244140625/243045684
Mapping: [⟨1 2 3 4], ⟨0 -33 -54 -95]]
Wedgie: ⟨⟨ 33 54 95 9 58 69 ]]
POTE generator: ~126/125 = 15.0667
Badness: 0.193315
11-limit
Comma list: 3025/3024, 4000/3993, 10976/10935
Mapping: [⟨1 2 3 4 4], ⟨0 -33 -54 -95 -43]]
POTE generator: ~121/120 = 15.0658
Vals: Template:Val list
Badness: 0.049170
13-limit
Comma list: 325/324, 364/363, 1001/1000, 10976/10935
Mapping: [⟨1 2 3 4 4 4], ⟨0 -33 -54 -95 -43 -24]]
POTE generator: ~121/120 = 15.0752
Vals: Template:Val list
Badness: 0.040929
17-limit
Comma list: 325/324, 364/363, 595/594, 1001/1000, 10976/10935
Mapping: [⟨1 2 3 4 4 4 4], ⟨0 -33 -54 -95 -43 -24 7]]
POTE generator: ~120/119 = 15.0715
Vals: Template:Val list
Badness: 0.031015
19-limit
Comma list: 325/324, 361/360, 364/363, 595/594, 1001/1000, 1521/1520
Mapping: [⟨1 2 3 4 4 4 4 5], ⟨0 -33 -54 -95 -43 -24 7 -60]]
POTE generator: ~120/119 = 15.0713
Vals: Template:Val list
Badness: 0.023193
Yarman II (79&159)
Comma list: 5359375/5308416, 390625000/387420489
Mapping: [⟨1 2 3 2], ⟨0 -33 -54 64]]
POTE generator: ~6144/6125 = 15.1062
Badness: 0.655487
11-limit
Comma list: 385/384, 4000/3993, 78121827/77948684
Mapping: [⟨1 2 3 2 4], ⟨0 -33 -54 64 -43]]
POTE generator: ~121/120 = 15.1071
Vals: Template:Val list
Badness: 0.143477
13-limit
Comma list: 325/324, 385/384, 1575/1573, 85683/85184
Mapping: [⟨1 2 3 2 4 4], ⟨0 -33 -54 64 -43 -24]]
POTE generator: ~105/104 = 15.1071
Vals: Template:Val list
Badness: 0.068150
17-limit
Comma list: 273/272, 325/324, 385/384, 1575/1573, 4928/4913
Mapping: [⟨1 2 3 2 4 4 4], ⟨0 -33 -54 64 -43 -24 7]]
POTE generator: ~105/104 = 15.1037
Vals: Template:Val list
Badness: 0.051019
19-limit
Comma list: 273/272, 325/324, 385/384, 665/663, 969/968, 1575/1573
Mapping: [⟨1 2 3 2 4 4 4 5], ⟨0 -33 -54 64 -43 -24 7 -60]]
POTE generator: ~105/104 = 15.1013
Vals: Template:Val list
Badness: 0.038430
Karadeniz temperament
K. E. Karadeniz proposed a 41 note MOS with generator 31/106, giving a "hemigaribaldi" type of tuning, with an 11/9 neutral third generator. It's more plausible as an 11-limit system than 13-limit; the 13-limit wedgie is:
⟨⟨ 2 -16 -28 5 40 -30 -50 1 56 -20 67 152 111 216 120 ]]
which in the 11-limit becomes:
⟨⟨ 2 -16 -28 5 -30 -50 1 -20 67 111 ]]
It tempers out 3125/3087, 4000/3969, 243/242, 5120/5103, 225/224, and 3025/3024, and can also be called 41&106. Aside from 31/106, 43/147 or 74/253 can be recommended as generators.
11-limit
Comma list: 225/224, 243/242, 3125/3087
Mapping: [⟨1 1 7 11 2], ⟨0 2 -16 -28 5]]
POTE generator: ~11/9 = 350.994
Badness: 0.041562
13-limit
Comma list: 225/224, 243/242, 325/324, 640/637
Mapping: [⟨1 1 7 11 2 -8], ⟨0 2 -16 -28 5 40]]
POTE generator: ~11/9 = 351.014
Vals: Template:Val list
Badness: 0.042564