1L 9s: Difference between revisions
Jump to navigation
Jump to search
More comments on the scale tree |
|||
Line 105: | Line 105: | ||
| | | | | | ||
| | 109.091 | | | 109.091 | ||
| style="text-align:center;" | | | style="text-align:center;" | L/s = 2 | ||
|- | |- | ||
| | | | | | ||
Line 161: | Line 161: | ||
| | | | | | ||
| | 114.286 | | | 114.286 | ||
| style="text-align:center;" | | | style="text-align:center;" | L/s = 3/2 | ||
|- | |- | ||
| | | | | | ||
Line 177: | Line 177: | ||
| | | | | | ||
| | 116.129 | | | 116.129 | ||
| style="text-align:center;" | | | style="text-align:center;" | Miracle is in this region | ||
|- | |- | ||
| | | | | |
Revision as of 13:54, 13 May 2021
This MOS, generated by any interval up to a diatonic semitone of 1/10edo (120 cents), is called the "Happy" decatonic scale. It is the simplest MOS which may be used as a complete version of Miracle temperamet, which is also its harmonic entropy minimum.
Generator
(octave fraction) |
Generator
(cents) |
Comments | ||||
---|---|---|---|---|---|---|
0\1 | 0 | |||||
1\14 | 85.714 | |||||
1\13 | 92.308 | L/s = 4 | ||||
2\25 | 96 | |||||
1200/(9+pi) | ||||||
1\12 | 100 | L/s = 3 | ||||
1200/(9+e) | ||||||
3\35 | 102.857 | |||||
1200/(10+phi) | ||||||
2\23 | 104.348 | |||||
3\34 | 105.882 | |||||
1\11 | 109.091 | L/s = 2 | ||||
1200/(9+sqrt(3)) | ||||||
4\43 | 111.628 | |||||
3\32 | 112.5 | |||||
1200/(9+phi) | ||||||
5\53 | 113.2075 | |||||
1200/(9+pi/2) | ||||||
2\21 | 114.286 | L/s = 3/2 | ||||
5\52 | 115.385 | |||||
3\31 | 116.129 | Miracle is in this region | ||||
4\41 | 117.073 | |||||
1\10 | 120 |