7L 2s: Difference between revisions
Restore old version before the "policy" |
|||
Line 1: | Line 1: | ||
This page is about of a [[MOSScales|MOSScale]] with 7 large steps and 2 small steps arranged LLLsLLLLs (or any rotation of that, such as LLsLLLsLL). | |||
If you're looking for highly accurate scales (that is, ones that approximate JI closely), there are much better scale patterns to look at. However, if your harmonic entropy is coarse enough (that is, if 678 cents is an acceptable '3/2' to you), then [[Pelogic_family|mávila]] is an important harmonic entropy minimum here. So a general name for this MOS pattern could be "Mávila Superdiatonic" or simply 'Superdiatonic'. | |||
These scales are strongly associated with the [[Armodue|Armodue]] project/system applied too on Septimal-mávila and Hornbostel temperaments. | |||
Optional types of 'JI [[Blown_Fifth|Blown Fifth]]' Generators: 31/21, 34/23, 65/44, 71/48, 99/67, 105/71, 108/73, 133/90, 145/98, 176/119 & 250/169. | |||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
| | | ! colspan="3" | Generator | ||
! | <span style="display: block; text-align: center;">'''Generator size (cents)'''</span> | |||
! | Pentachord steps | |||
! | Comments | |||
|- | |||
| | 4\[[7edo|7]] | |||
| | | |||
| | | |||
| | 685.714 | |||
| | 1 1 1 0 | |||
| | | |||
|- | |||
| | | |||
| | | | | | ||
| | 102\[[179edo|179]] | |||
| | 683.798 | |||
| | 25 25 25 2 | |||
| | Approximately 0.03 cents away from [[95/64]] | |||
|- | |- | ||
| | | | | 33\[[58edo|58]] | ||
| | | |||
| | | | | | ||
| | 682.758 | |||
| | 8 8 8 1 | |||
| | 2 generators equal 11/10, 6 equal 4/3, creating a hybrid Mávila/Porcupine scale with three perfect 5ths as well as the flat ones. | |||
|- | |- | ||
| | | | | 21\37 | ||
| | | |||
| | | |||
| | 681.081 | |||
| | 5 5 5 1 | |||
| | | | | | ||
|- | |- | ||
| | | | | 17\30 | ||
| | | |||
| | | |||
| | 680 | |||
| | 4 4 4 1 | |||
| | L/s = 4 | |||
|- | |||
| | | |||
| | 30\53 | |||
| | | |||
| | 679.245 | |||
| | 7 7 7 2 | |||
| | | | | | ||
|- | |- | ||
| | | | | | ||
| | | | | 43\76 | ||
| | | |||
| | 678.947 | |||
| | 10 10 10 3 | |||
| | | |||
|- | |- | ||
| | | | | | ||
| | 56\99 | |||
| | | |||
| | 678.788 | |||
| | 13 13 13 4 | |||
| | | | | | ||
|- | |- | ||
| | | | | | ||
| | 69\122 | |||
| | | |||
| | 678.6885 | |||
| | 16 16 16 5 | |||
| | | | | | ||
|- | |- | ||
| | | | | | ||
| | 82\145 | |||
| | | |||
| | 678.621 | |||
| | 19 19 19 6 | |||
| | | | | | ||
|- | |- | ||
| | | | | | ||
| | | | | 95\168 | ||
| | | | | ||
| | 678.571 | |||
| | 22 22 22 7 | |||
| | | |||
|- | |- | ||
| | | |||
| | | |||
| | | |||
| | 678.569 | |||
| | π π π 1 | |||
| | L/s = π | |||
|- | |- | ||
| | | | | | ||
| | 108\191 | |||
| | | | | | ||
| | | | | 678.534 | ||
| | 25 25 25 8 | |||
| | | |||
| | | | | | ||
|- | |- | ||
| | | | | | ||
| | | | | 121\214 | ||
| | | | | | ||
| | | | | 678.505 | ||
| | | | | 28 28 28 9 | ||
| | | | | 28;9 Superdiatonic 1/28-tone <span style="font-size: 12.8000001907349px;">(a slight exceeded representation of the ratio 262144/177147, the Pythagorean wolf Fifth)</span> | ||
|- | |- | ||
| | | | | | ||
| | | | | 134\237 | ||
| | | | | | ||
| | | | | 678.481 | ||
| | | | | 31 31 31 10 | ||
| | | | | HORNBOSTEL TEMPERAMENT <span style="font-size: 12.8000001907349px;">(1/31-tone; Optimum high size of Hornbostel '6th')</span> | ||
|- | |- | ||
| | 13\23 | | | 13\23 | ||
| | | | | | ||
| | | | | | ||
| | 678.261 | | | 678.261 | ||
| | 3/1 | | | 3 3 3 1 | ||
| | | | | HORNBOSTEL TEMPERAMENT <span style="font-size: 12.8000001907349px;">(Armodue 1/3-tone)</span> | ||
|- | |||
| | | |||
| | 126\223 | |||
| | | |||
| | 678.027 | |||
| | 29 29 29 10 | |||
| | HORNBOSTEL TEMPERAMENT | |||
<span style="font-size: 12.8000001907349px;">(Armodue 1/29-tone)</span> | |||
|- | |||
| | | |||
| | 113\200 | |||
| | | |||
| | 678 | |||
| | 26 26 26 9 | |||
| | HORNBOSTEL (& [[Alexei_Stepanovich_Ogolevets|OGOLEVETS]]) TEMPERAMENT <span style="font-size: 12.8000001907349px;">(Armodue 1/26-tone; Best equillibrium between 6/5, Phi (833.1 Cent) and Square root of Pi (990.9 Cent), the notes '3', '7' & '8')</span> | |||
|- | |||
| | | |||
| | 100\177 | |||
| | | |||
| | 677.966 | |||
| | 23 23 23 8 | |||
| | | |||
|- | |||
| | | |||
| | 87\154 | |||
| | | |||
| | 677.922 | |||
| | 20 20 20 7 | |||
| | | |||
|- | |- | ||
| | | | | | ||
| | | | | 74\131 | ||
| | | |||
| | 677.863 | |||
| | 17 17 17 6 | |||
| | Armodue-Hornbostel 1/17-tone <span style="font-size: 12.8000001907349px;">(the Golden Tone System of Thorvald Kornerup and a temperament of the Alexei Ogolevets's list of temperaments)</span> | |||
|- | |||
| | | |||
| | 61\108 | |||
| | | |||
| | 677.778 | |||
| | 14 14 14 5 | |||
| | Armodue-Hornbostel 1/14-tone | |||
|- | |||
| | | |||
| | 109\193 | |||
| | | |||
| | 677.720 | |||
| | 25 25 25 9 | |||
| | Armodue-Hornbostel 1/25-tone | |||
|- | |||
| | | |||
| | 48\85 | |||
| | | |||
| | 677.647 | |||
| | 11 11 11 4 | |||
| | Armodue-Hornbostel 1/11-tone <span style="font-size: 12.8000001907349px;">(Optimum accuracy of Phi interval, the note '7')</span> | |||
|- | |||
| | | |||
| | | |||
| | | |||
| | 677.562 | |||
| | e e e 1 | |||
| | L/s = e | |||
|- | |||
| | | |||
| | 35\62 | |||
| | | |||
| | 677.419 | |||
| | 8 8 8 3 | |||
| | Armodue-Hornbostel 1/8-tone | |||
|- | |||
| | | |||
| | 92\163 | |||
| | | |||
| | 677.301 | |||
| | 21 21 21 8 | |||
| | 21;8 Superdiatonic 1/21-tone | |||
|- | |||
| | | |||
| | | |||
| | | |||
| | 677.28 | |||
| | <span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif; font-size: small;">φ+1 φ+1 φ+1 1</span> | |||
| | Split φ superdiatonic relation (34;13 - 55;21 - 89;34 - 144;55 - 233;89 - 377;144 - 610;233..) | |||
|- | |||
| | | |||
| | 57\101 | |||
| | | |||
| | 677.228 | |||
| | 13 13 13 5 | |||
| | 13;5 Superdiatonic 1/13-tone | |||
|- | |||
| | 22\39 | | | 22\39 | ||
| | | | | | ||
| | | |||
| | 676.923 | | | 676.923 | ||
| | 5/ | | | 5 5 5 2 | ||
| | Armodue-Hornbostel 1/5-tone <span style="font-size: 12.8000001907349px;">(Optimum low size of Hornbostel '6th')</span> | |||
|- | |||
| | | |||
| | 75\133 | |||
| | | |||
| | 676.692 | |||
| | 17 17 17 7 | |||
| | 17;7 Superdiatonic 1/17-tone <span style="font-size: 12.8000001907349px;">(Note the very accuracy of the step 75 with the ratio 34/23 with an error of +0.011 Cents)</span> | |||
|- | |||
| | | |||
| | 53\94 | |||
| | | |||
| | 676.596 | |||
| | 12 12 12 5 | |||
| | | |||
|- | |||
| | | |||
| | 31\55 | |||
| | | |||
| | 676.364 | |||
| | 7 7 7 3 | |||
| | 7;3 Superdiatonic 1/7-tone | |||
|- | |||
| | | |||
| | 40\71 | |||
| | | |||
| | 676.056 | |||
| | 9 9 9 4 | |||
| | 9;4 Superdiatonic 1/9-tone | |||
|- | |||
| | | |||
| | 49\87 | |||
| | | |||
| | 675.862 | |||
| | 11 11 11 5 | |||
| | 11;5 Superdiatonic 1/11-tone | |||
|- | |||
| | | |||
| | 58\103 | |||
| | | |||
| | 675.728 | |||
| | 13 13 13 6 | |||
| | 13;6 Superdiatonic 1/13-tone | |||
|- | |- | ||
| | 9\16 | | | 9\16 | ||
| | | | | | ||
| | | | | | ||
| | 675 | | | 675 | ||
| | 2 | | | 2 2 2 1 | ||
| | | | | <span style="display: block; text-align: left;">'''[BOUNDARY OF PROPRIETY: smaller generators are strictly proper]'''</span>ARMODUE ESADECAFONIA (or Goldsmith Temperament) | ||
|- | |||
| | | |||
| | 59\105 | |||
| | | |||
| | 674.286 | |||
| | 13 13 13 7 | |||
| | Armodue-Mávila 1/13-tone | |||
|- | |||
| | | |||
| | 50\89 | |||
| | | |||
| | 674.157 | |||
| | 11 11 11 6 | |||
| | Armodue-Mávila 1/11-tone | |||
|- | |||
| | | |||
| | 41\73 | |||
| | | |||
| | 673.973 | |||
| | 9 9 9 5 | |||
| | Armodue-Mávila 1/9-tone <span style="font-size: 12.8000001907349px;">(with an approximation of the Perfect Fifth + 1/5 Pyth.Comma [706.65 Cents]: 43\73 is 706.85 Cents)</span> | |||
|- | |||
| | | |||
| | 32\57 | |||
| | | |||
| | 673.684 | |||
| | 7 7 7 4 | |||
| | Armodue-Mávila 1/7-tone <span style="font-size: 12.8000001907349px;">(the 'Commatic' version of Armodue, because its high accuracy of the [[7/4|7/4]] interval, the note '8')</span> | |||
|- | |||
| | | |||
| | | |||
| | | |||
| | 673.577 | |||
| | <span style="background-color: #ffffff;">√3 √3 √3 1</span> | |||
| | | |||
|- | |||
| | | |||
| | 55\98 | |||
| | | |||
| | 673.469 | |||
| | 12 12 12 7 | |||
| | | |||
|- | |||
| | | |||
| | 78\139 | |||
| | | |||
| | 673.381 | |||
| | 17 17 17 10 | |||
| | Armodue-Mávila 1/17-tone | |||
|- | |||
| | | |||
| | 101\180 | |||
| | | |||
| | 673.333 | |||
| | 22 22 22 13 | |||
| | | |||
|- | |- | ||
| | 23\41 | | | 23\41 | ||
| | | | | | ||
| | | | | | ||
| | 673.171 | | | 673.171 | ||
| | 5/ | | | 5 5 5 3 | ||
| | 5;3 Golden Armodue-Mávila 1/5-tone | |||
|- | |||
| | | | | | ||
| | 60\107 | |||
| | | |||
| | 672.897 | |||
| | 13 13 13 8 | |||
| | 13;8 Golden Mávila 1/13-tone | |||
|- | |- | ||
| | | | | | ||
| | | | | | ||
| | | | | | ||
| | 672.85 | | | 672.85 | ||
| | φ/1 | | | <span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif; font-size: small;">φ φ φ 1</span> | ||
| | Golden | | | GOLDEN MÁVILA (L/s = <span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif; font-size: small;">φ)</span> | ||
|- | |||
| | | |||
| | | |||
| | 97\173 | |||
| | 672.832 | |||
| | 21 21 21 13 | |||
| | 21;13 Golden Mávila 1/21-tone <span style="font-size: 12.8000001907349px;">(Phi is the step 120\173)</span> | |||
|- | |||
| | | |||
| | 37\66 | |||
| | | |||
| | 672.727 | |||
| | 8 8 8 5 | |||
| | 8;5 Golden Mávila 1/8-tone | |||
|- | |||
| | | |||
| | 51\91 | |||
| | | |||
| | 672.527 | |||
| | 11 11 11 7 | |||
| | 11;7 Superdiatonic 1/11-tone | |||
|- | |||
| | | |||
| | | |||
| | | |||
| | 672.523 | |||
| | π π π 2 | |||
| | | |||
|- | |||
| | | |||
| | | |||
| | 116\207 | |||
| | 672.464 | |||
| | 25 25 25 16 | |||
| | 25;16 Superdiatonic 1/25-tone | |||
|- | |||
| | | |||
| | 65\116 | |||
| | | |||
| | 672.414 | |||
| | 14 14 14 9 | |||
| | 14;9 Superdiatonic 1/14-tone | |||
|- | |||
| | | |||
| | 79\141 | |||
| | | |||
| | 672.340 | |||
| | 17 17 17 11 | |||
| | 17;11 Superdiatonic 1/17-tone | |||
|- | |||
| | | |||
| | 93\166 | |||
| | | |||
| | 672.289 | |||
| | 20 20 20 13 | |||
| | | |||
|- | |||
| | | |||
| | 107\191 | |||
| | | |||
| | 672.251 | |||
| | 23 23 23 15 | |||
| | | |||
|- | |||
| | | |||
| | 121\216 | |||
| | | |||
| | 672.222 | |||
| | 26 26 26 17 | |||
| | 26;17 Superdiatonic 1/26-tone | |||
|- | |||
| | | |||
| | 135\241 | |||
| | | |||
| | 672.199 | |||
| | 29 29 29 19 | |||
| | 29;19 Superdiatonic 1/29-tone | |||
|- | |- | ||
| | 14\25 | | | 14\25 | ||
| | | | | | ||
| | | | | | ||
| | 672 | | | 672 | ||
| | 3/ | | | 3 3 3 2 | ||
| | 3;2 Golden Armodue-Mávila 1/3-tone | |||
|- | |||
| | | |||
| | 145\259 | |||
| | | |||
| | 671.815 | |||
| | 31 31 31 21 | |||
| | 31;21 Superdiatonic 1/31-tone | |||
|- | |||
| | | |||
| | 131\234 | |||
| | | |||
| | 671.795 | |||
| | 28 28 28 19 | |||
| | 28;19 Superdiatonic 1/28-tone | |||
|- | |||
| | | |||
| | 117\209 | |||
| | | |||
| | 671.770 | |||
| | 25 25 25 17 | |||
| | | |||
|- | |||
| | | |||
| | 103\184 | |||
| | | |||
| | 671.739 | |||
| | 22 22 22 15 | |||
| | | |||
|- | |||
| | | |||
| | 89\159 | |||
| | | |||
| | 671.698 | |||
| | 19 19 19 13 | |||
| | | |||
|- | |||
| | | |||
| | 75\134 | |||
| | | |||
| | 671.642 | |||
| | 16 16 16 11 | |||
| | | |||
|- | |||
| | | |||
| | 61\109 | |||
| | | |||
| | 671.560 | |||
| | 13 13 13 9 | |||
| | | |||
|- | |||
| | 47\84 | |||
| | | |||
| | | |||
| | 671.429 | |||
| | 10 10 10 7 | |||
| | | |||
|- | |||
| | 33\59 | |||
| | | |||
| | | |||
| | 671.186 | |||
| | 7 7 7 5 | |||
| | | | | | ||
|- | |- | ||
| | 19\34 | | | 19\34 | ||
| | | |||
| | | | | | ||
| | 670.588 | | | 670.588 | ||
| | 4 | | | 4 4 4 3 | ||
| | | | | | ||
|- | |- | ||
| | 24\43 | | | 24\43 | ||
| | | |||
| | | |||
| | 669.767 | | | 669.767 | ||
| | 5 | | | 5 5 5 4 | ||
| | | | | | ||
|- | |- | ||
Line 212: | Line 516: | ||
| | | | | | ||
| | | | | | ||
| | 666.667 | | | 666.667 | ||
| | 1 | | | 1 1 1 1 | ||
| | | | | | ||
|} | |} | ||
[[Category:diatonic]] | |||
[[Category:mavila]] | |||
[[Category: | |||
[[Category: | |||
[[Category:Abstract MOS patterns]] | [[Category:Abstract MOS patterns]] | ||
[[Category: | [[Category:scale]] | ||
[[Category:scales]] | |||
[[Category:superdiatonic]] | |||
[[Category:theory]] |
Revision as of 04:22, 14 April 2021
This page is about of a MOSScale with 7 large steps and 2 small steps arranged LLLsLLLLs (or any rotation of that, such as LLsLLLsLL).
If you're looking for highly accurate scales (that is, ones that approximate JI closely), there are much better scale patterns to look at. However, if your harmonic entropy is coarse enough (that is, if 678 cents is an acceptable '3/2' to you), then mávila is an important harmonic entropy minimum here. So a general name for this MOS pattern could be "Mávila Superdiatonic" or simply 'Superdiatonic'.
These scales are strongly associated with the Armodue project/system applied too on Septimal-mávila and Hornbostel temperaments.
Optional types of 'JI Blown Fifth' Generators: 31/21, 34/23, 65/44, 71/48, 99/67, 105/71, 108/73, 133/90, 145/98, 176/119 & 250/169.
Generator | Generator size (cents) | Pentachord steps | Comments | ||
---|---|---|---|---|---|
4\7 | 685.714 | 1 1 1 0 | |||
102\179 | 683.798 | 25 25 25 2 | Approximately 0.03 cents away from 95/64 | ||
33\58 | 682.758 | 8 8 8 1 | 2 generators equal 11/10, 6 equal 4/3, creating a hybrid Mávila/Porcupine scale with three perfect 5ths as well as the flat ones. | ||
21\37 | 681.081 | 5 5 5 1 | |||
17\30 | 680 | 4 4 4 1 | L/s = 4 | ||
30\53 | 679.245 | 7 7 7 2 | |||
43\76 | 678.947 | 10 10 10 3 | |||
56\99 | 678.788 | 13 13 13 4 | |||
69\122 | 678.6885 | 16 16 16 5 | |||
82\145 | 678.621 | 19 19 19 6 | |||
95\168 | 678.571 | 22 22 22 7 | |||
678.569 | π π π 1 | L/s = π | |||
108\191 | 678.534 | 25 25 25 8 | |||
121\214 | 678.505 | 28 28 28 9 | 28;9 Superdiatonic 1/28-tone (a slight exceeded representation of the ratio 262144/177147, the Pythagorean wolf Fifth) | ||
134\237 | 678.481 | 31 31 31 10 | HORNBOSTEL TEMPERAMENT (1/31-tone; Optimum high size of Hornbostel '6th') | ||
13\23 | 678.261 | 3 3 3 1 | HORNBOSTEL TEMPERAMENT (Armodue 1/3-tone) | ||
126\223 | 678.027 | 29 29 29 10 | HORNBOSTEL TEMPERAMENT
(Armodue 1/29-tone) | ||
113\200 | 678 | 26 26 26 9 | HORNBOSTEL (& OGOLEVETS) TEMPERAMENT (Armodue 1/26-tone; Best equillibrium between 6/5, Phi (833.1 Cent) and Square root of Pi (990.9 Cent), the notes '3', '7' & '8') | ||
100\177 | 677.966 | 23 23 23 8 | |||
87\154 | 677.922 | 20 20 20 7 | |||
74\131 | 677.863 | 17 17 17 6 | Armodue-Hornbostel 1/17-tone (the Golden Tone System of Thorvald Kornerup and a temperament of the Alexei Ogolevets's list of temperaments) | ||
61\108 | 677.778 | 14 14 14 5 | Armodue-Hornbostel 1/14-tone | ||
109\193 | 677.720 | 25 25 25 9 | Armodue-Hornbostel 1/25-tone | ||
48\85 | 677.647 | 11 11 11 4 | Armodue-Hornbostel 1/11-tone (Optimum accuracy of Phi interval, the note '7') | ||
677.562 | e e e 1 | L/s = e | |||
35\62 | 677.419 | 8 8 8 3 | Armodue-Hornbostel 1/8-tone | ||
92\163 | 677.301 | 21 21 21 8 | 21;8 Superdiatonic 1/21-tone | ||
677.28 | φ+1 φ+1 φ+1 1 | Split φ superdiatonic relation (34;13 - 55;21 - 89;34 - 144;55 - 233;89 - 377;144 - 610;233..) | |||
57\101 | 677.228 | 13 13 13 5 | 13;5 Superdiatonic 1/13-tone | ||
22\39 | 676.923 | 5 5 5 2 | Armodue-Hornbostel 1/5-tone (Optimum low size of Hornbostel '6th') | ||
75\133 | 676.692 | 17 17 17 7 | 17;7 Superdiatonic 1/17-tone (Note the very accuracy of the step 75 with the ratio 34/23 with an error of +0.011 Cents) | ||
53\94 | 676.596 | 12 12 12 5 | |||
31\55 | 676.364 | 7 7 7 3 | 7;3 Superdiatonic 1/7-tone | ||
40\71 | 676.056 | 9 9 9 4 | 9;4 Superdiatonic 1/9-tone | ||
49\87 | 675.862 | 11 11 11 5 | 11;5 Superdiatonic 1/11-tone | ||
58\103 | 675.728 | 13 13 13 6 | 13;6 Superdiatonic 1/13-tone | ||
9\16 | 675 | 2 2 2 1 | [BOUNDARY OF PROPRIETY: smaller generators are strictly proper]ARMODUE ESADECAFONIA (or Goldsmith Temperament) | ||
59\105 | 674.286 | 13 13 13 7 | Armodue-Mávila 1/13-tone | ||
50\89 | 674.157 | 11 11 11 6 | Armodue-Mávila 1/11-tone | ||
41\73 | 673.973 | 9 9 9 5 | Armodue-Mávila 1/9-tone (with an approximation of the Perfect Fifth + 1/5 Pyth.Comma [706.65 Cents]: 43\73 is 706.85 Cents) | ||
32\57 | 673.684 | 7 7 7 4 | Armodue-Mávila 1/7-tone (the 'Commatic' version of Armodue, because its high accuracy of the 7/4 interval, the note '8') | ||
673.577 | √3 √3 √3 1 | ||||
55\98 | 673.469 | 12 12 12 7 | |||
78\139 | 673.381 | 17 17 17 10 | Armodue-Mávila 1/17-tone | ||
101\180 | 673.333 | 22 22 22 13 | |||
23\41 | 673.171 | 5 5 5 3 | 5;3 Golden Armodue-Mávila 1/5-tone | ||
60\107 | 672.897 | 13 13 13 8 | 13;8 Golden Mávila 1/13-tone | ||
672.85 | φ φ φ 1 | GOLDEN MÁVILA (L/s = φ) | |||
97\173 | 672.832 | 21 21 21 13 | 21;13 Golden Mávila 1/21-tone (Phi is the step 120\173) | ||
37\66 | 672.727 | 8 8 8 5 | 8;5 Golden Mávila 1/8-tone | ||
51\91 | 672.527 | 11 11 11 7 | 11;7 Superdiatonic 1/11-tone | ||
672.523 | π π π 2 | ||||
116\207 | 672.464 | 25 25 25 16 | 25;16 Superdiatonic 1/25-tone | ||
65\116 | 672.414 | 14 14 14 9 | 14;9 Superdiatonic 1/14-tone | ||
79\141 | 672.340 | 17 17 17 11 | 17;11 Superdiatonic 1/17-tone | ||
93\166 | 672.289 | 20 20 20 13 | |||
107\191 | 672.251 | 23 23 23 15 | |||
121\216 | 672.222 | 26 26 26 17 | 26;17 Superdiatonic 1/26-tone | ||
135\241 | 672.199 | 29 29 29 19 | 29;19 Superdiatonic 1/29-tone | ||
14\25 | 672 | 3 3 3 2 | 3;2 Golden Armodue-Mávila 1/3-tone | ||
145\259 | 671.815 | 31 31 31 21 | 31;21 Superdiatonic 1/31-tone | ||
131\234 | 671.795 | 28 28 28 19 | 28;19 Superdiatonic 1/28-tone | ||
117\209 | 671.770 | 25 25 25 17 | |||
103\184 | 671.739 | 22 22 22 15 | |||
89\159 | 671.698 | 19 19 19 13 | |||
75\134 | 671.642 | 16 16 16 11 | |||
61\109 | 671.560 | 13 13 13 9 | |||
47\84 | 671.429 | 10 10 10 7 | |||
33\59 | 671.186 | 7 7 7 5 | |||
19\34 | 670.588 | 4 4 4 3 | |||
24\43 | 669.767 | 5 5 5 4 | |||
5\9 | 666.667 | 1 1 1 1 |