Pepper ambiguity: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
m Cleanup and improve readability
m Categories
Line 12: Line 12:
We may also define the mean ambiguity for ''N'' with respect to ''s'' by taking the mean of ambig(''N'', ''q'') for all members ''q'' of ''s''.
We may also define the mean ambiguity for ''N'' with respect to ''s'' by taking the mean of ambig(''N'', ''q'') for all members ''q'' of ''s''.


[[Category:Theory]]
[[Category:EDO theory pages]]
[[Category:Terms]]
[[Category:Measure]]
[[Category:Measure]]

Revision as of 09:48, 11 December 2020

Given an edo N and a positive rational number q, we may define the ambiguity ambig(N, q) of q in N edo by first computing u = N log2(q), and from there v = abs(u - round(u)). Then ambig(N, q) = v/(1 - v). Since v is a measure of the relative error of q in is best approximation in N edo, and 1 - v of its second best approximation, ambig(N, q) is the ratio of the best approximation to the second best. If we used relative cents instead to measure relative error, we would get the same result.

Given a finite set s of positive rational numbers, the maximum value of ambig(N, q) for all qs is the Pepper ambiguity of N with respect to s. If the set s is the L odd limit tonality diamond, this is the L-limit Pepper ambiguity of N. Lists of N of decreasing Pepper ambiguity can be found on the On-Line Encyclopedia of Integer Sequences:

We may also define the mean ambiguity for N with respect to s by taking the mean of ambig(N, q) for all members q of s.