|
|
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | =<span style="color: #590059; font-family: 'Times New Roman',Times,serif; font-size: 113%;">253 tone equal temperament</span>= |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| |
| : This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2016-12-29 17:33:22 UTC</tt>.<br>
| |
| : The original revision id was <tt>602901206</tt>.<br>
| |
| : The revision comment was: <tt>Reverted to Aug 15, 2015 7:14 pm: reverted last (destructive) edits</tt><br>
| |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=<span style="color: #590059; font-family: 'Times New Roman',Times,serif; font-size: 113%;">253 tone equal temperament</span>=
| |
|
| |
|
| **//253-EDO//** or **253-tET** divides the octave into 253 equal steps of 4.743083 cents each. It approximates the fifth by **148\253**, which is 701.976285 cents, a mere **0.004487 cents sharp**. The primes from 5 to 17 are all slightly flat. It tempers out 32805/32768 in the 5-limit; 2401/2400 in the 7-limit; 385/384, 1375/1372 and 4000/3993 in the 11-limit; 325/324, 1575/1573 and 2200/2197 in the 13-limit; 375/374 and 595/594 in the 17-limit. It provides a good tuning for higher-limit [[Schismatic family|sesquiquartififths]] temperament.
| | '''''253-EDO''''' or '''253-tET''' divides the octave into 253 equal steps of 4.743083 cents each. It approximates the fifth by '''148\253''', which is 701.976285 cents, a mere '''0.004487 cents sharp'''. The primes from 5 to 17 are all slightly flat. It tempers out 32805/32768 in the 5-limit; 2401/2400 in the 7-limit; 385/384, 1375/1372 and 4000/3993 in the 11-limit; 325/324, 1575/1573 and 2200/2197 in the 13-limit; 375/374 and 595/594 in the 17-limit. It provides a good tuning for higher-limit [[Schismatic_family|sesquiquartififths]] temperament. |
| | |
| | <u>'''253 tone equal modes:'''</u> |
| | |
| | 63 32 63 63 32: [[3L_2s|Pentatonic]] |
| | |
| | 43 43 19 43 43 43 19: [[5L_2s|Pythagorean tuning]] |
|
| |
|
| __**253 tone equal modes:**__
| |
| 63 32 63 63 32: [[3L 2s|Pentatonic]]
| |
| 43 43 19 43 43 43 19: [[5L 2s|Pythagorean tuning]]
| |
| 41 41 24 41 41 41 24: [[Meantone|Meantonic tuning]] | | 41 41 24 41 41 41 24: [[Meantone|Meantonic tuning]] |
| 35 35 35 35 35 35 35 8: [[7L 1s|Porcupine tuning]] | | |
| | 35 35 35 35 35 35 35 8: [[7L_1s|Porcupine tuning]] |
| | |
| 33 33 33 11 33 33 33 33 11: [[23edo|"The Hendecapliqued superdiatonic of the Icositriphony"]] | | 33 33 33 11 33 33 33 33 11: [[23edo|"The Hendecapliqued superdiatonic of the Icositriphony"]] |
| 31 31 31 18 31 31 31 31 18: [[7L 2s|Superdiatonic tuning]] in the way of Mavila | | |
| | 31 31 31 18 31 31 31 31 18: [[7L_2s|Superdiatonic tuning]] in the way of Mavila |
| | |
| 26 26 15 26 26 26 15 26 26 26 15: [[sensi11|Sensi tuning]] | | 26 26 15 26 26 26 15 26 26 26 15: [[sensi11|Sensi tuning]] |
| 20 20 20 11 20 20 20 20 11 20 20 20 20 11: [[11L 3s|Ketradektriatoh tuning]] | | |
| **PRIME FACTORIZATION:**
| | 20 20 20 11 20 20 20 20 11 20 20 20 20 11: [[11L_3s|Ketradektriatoh tuning]] |
| 253 = [[11edo|11]] * [[23edo|23]]</pre></div> | | |
| <h4>Original HTML content:</h4>
| | '''PRIME FACTORIZATION:''' |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>253edo</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="x253 tone equal temperament"></a><!-- ws:end:WikiTextHeadingRule:0 --><span style="color: #590059; font-family: 'Times New Roman',Times,serif; font-size: 113%;">253 tone equal temperament</span></h1>
| | |
| <br />
| | 253 = [[11edo|11]] * [[23edo|23]] [[Category:edo]] |
| <strong><em>253-EDO</em></strong> or <strong>253-tET</strong> divides the octave into 253 equal steps of 4.743083 cents each. It approximates the fifth by <strong>148\253</strong>, which is 701.976285 cents, a mere <strong>0.004487 cents sharp</strong>. The primes from 5 to 17 are all slightly flat. It tempers out 32805/32768 in the 5-limit; 2401/2400 in the 7-limit; 385/384, 1375/1372 and 4000/3993 in the 11-limit; 325/324, 1575/1573 and 2200/2197 in the 13-limit; 375/374 and 595/594 in the 17-limit. It provides a good tuning for higher-limit <a class="wiki_link" href="/Schismatic%20family">sesquiquartififths</a> temperament.<br />
| | [[Category:modes]] |
| <br />
| | [[Category:nano]] |
| <u><strong>253 tone equal modes:</strong></u><br />
| | [[Category:sesquiquartififths]] |
| 63 32 63 63 32: <a class="wiki_link" href="/3L%202s">Pentatonic</a><br />
| | [[Category:superpythagorean]] |
| 43 43 19 43 43 43 19: <a class="wiki_link" href="/5L%202s">Pythagorean tuning</a><br />
| | [[Category:theory]] |
| 41 41 24 41 41 41 24: <a class="wiki_link" href="/Meantone">Meantonic tuning</a><br />
| |
| 35 35 35 35 35 35 35 8: <a class="wiki_link" href="/7L%201s">Porcupine tuning</a><br />
| |
| 33 33 33 11 33 33 33 33 11: <a class="wiki_link" href="/23edo">&quot;The Hendecapliqued superdiatonic of the Icositriphony&quot;</a><br />
| |
| 31 31 31 18 31 31 31 31 18: <a class="wiki_link" href="/7L%202s">Superdiatonic tuning</a> in the way of Mavila<br />
| |
| 26 26 15 26 26 26 15 26 26 26 15: <a class="wiki_link" href="/sensi11">Sensi tuning</a><br />
| |
| 20 20 20 11 20 20 20 20 11 20 20 20 20 11: <a class="wiki_link" href="/11L%203s">Ketradektriatoh tuning</a><br />
| |
| <strong>PRIME FACTORIZATION:</strong><br />
| |
| 253 = <a class="wiki_link" href="/11edo">11</a> * <a class="wiki_link" href="/23edo">23</a></body></html></pre></div>
| |
253 tone equal temperament
253-EDO or 253-tET divides the octave into 253 equal steps of 4.743083 cents each. It approximates the fifth by 148\253, which is 701.976285 cents, a mere 0.004487 cents sharp. The primes from 5 to 17 are all slightly flat. It tempers out 32805/32768 in the 5-limit; 2401/2400 in the 7-limit; 385/384, 1375/1372 and 4000/3993 in the 11-limit; 325/324, 1575/1573 and 2200/2197 in the 13-limit; 375/374 and 595/594 in the 17-limit. It provides a good tuning for higher-limit sesquiquartififths temperament.
253 tone equal modes:
63 32 63 63 32: Pentatonic
43 43 19 43 43 43 19: Pythagorean tuning
41 41 24 41 41 41 24: Meantonic tuning
35 35 35 35 35 35 35 8: Porcupine tuning
33 33 33 11 33 33 33 33 11: "The Hendecapliqued superdiatonic of the Icositriphony"
31 31 31 18 31 31 31 31 18: Superdiatonic tuning in the way of Mavila
26 26 15 26 26 26 15 26 26 26 15: Sensi tuning
20 20 20 11 20 20 20 20 11 20 20 20 20 11: Ketradektriatoh tuning
PRIME FACTORIZATION:
253 = 11 * 23